On The Study Of AVD- Total Coloring Of Triangular Snake Graph Families

Uma S ${ }^{1}$, Rajeshwari. \mathbf{M}^{2}, Prashanth. K. K ${ }^{3}$
$1^{1 * 2,3 \text { Department of Mathematics, Presidency University, Ittagalpur, Bengaluru-560064, India. }}$
${ }^{1}$ Email: uma.s1383@gmail.com, ${ }^{2}$ Email: rajeshwarim@presidencyuniversity, 3Email: Prashanthkko703@gmail.com

Citation: Uma S et al. (2024) On The Study Of AVD- Total Coloring Of Triangular Snake Graph Families, Educational Administration: Theory and Practice, 30(4), 4309-4314
Doi: 10.53555/kuey.v3oi4.2203

ARTICLE INFO	ABSTRACT
	Assume that a simple undirected graph is represented by $G=(V, E)$. It is
assumed that the correct total coloring has been done when two adjacent vertices	
have different sets of colors for the incidence edges on them and the vertex itself.	
This study investigates the total coloring graphs of adjacent vertex distinguishing	
(AVD) systems. Moreover, we determine the triangle families of the AVD-total	
color number of Snake Graph.	

Keywords: Triangular snake graph, AVD total coloring.

Introduction

Coloring of graphs is one of the most important, well-known, and actively studied subfields of graph theory. The graph coloring problem is one of the most researched because of its theoretical and practical significance. As a result, experts and scholars from all over the world have studied this topic in great detail. Certain network issues can be addressed with adjacent-vertex differentiating edge coloring and adjacent-vertex distinguishing total coloring.
Colors can be assigned to the edges, vertices, or both of a graph G . The vertex coloring is considered accurate if no two vertices acquire the same color. The literature contains a wide range of suitable colorings, including vertex coloring. a-coloring, b-coloring, edge coloring, list coloring, and so on are some examples of coloring techniques. The entire coloring of graphs is the main focus of the current effort. A total coloring of G is a function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{C}$ where $\mathrm{S}=\mathrm{V}(\mathrm{G}) \cup \mathrm{E})(\mathrm{G})$ and C is a set of colors to satisfies the given Conditions.

No vertex next to it receives the same color more than once.
The color of no two adjacent borders is the same.
None of its edges have the same color applied to its end vertices.
The least cardinality k that allows G to have a total coloring by k-colors is known as the total chromatic number, or χ "(G) of a graph.

Definition

Chromatic number:

If G has a valid vertex coloring, then the chromatic number of G is the minimal number of colors needed to color G . The chromatic number of G is represented by the symbol
χ (G).

Definition

Total coloring:

A graph G is said to be fully colored when all of its edges and vertices have the same color applied to them.

Definition

Total chromatic number:
The symbol χ "(G) represents total- chromatic number, which is the bare minimum number of colors required to get color G .

[^0]
Definition

AVD-total coloring:
G is a basic graph, and ϕ represents G's overall coloring. ϕ represents an AVD-total color. In the event when \forall $u, v \in V(G)$ uv adjacent, $C(u) \neq C(v)$. In this case, $C(u)$: color set that appears in a vertex u.

Definition

Triangular Snake T_{m} : [6]A Triangular Snake T_{m} is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq m-1$.

Definition

Double Triangular snake $\mathbf{D}\left(\mathrm{T}_{\mathrm{m}}\right)$: [6] Two triangular snakes with a common path make up the double triangular snake $\mathrm{D}\left(\mathrm{T}_{\mathrm{m}}\right)$

Definition

Alternate Triangular Snake AT_{m} :[6]An Alternate Triangular Snake AT_{m} is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ by joining u_{i} and u_{i+1} (alternatively) to a new vertex v_{i}.
In the present paper we focusing on AVD coloring for triangular snake graph T_{m}, Double triangular snake graph DT_{m} and Alternative triangular snake graph AT_{m}.

MAIN RESULT AND DISCUSSION

Theorem 1

For any triangular snake graph $\chi\left(T_{m}\right)=\left\{\begin{array}{c}\left.n=3 \quad \underset{m}{ } \quad T_{m}\right) \text { is } 3 \text { otherwise } \\ \forall n>3 \chi\left(T_{m}\right) \text { is } 5\end{array}\right.$ or $\chi\left(T_{m}\right)=\Delta(G)+1$
Proof: Let $V\left(T_{m}\right)=\left\{u_{1}: 1 \leq l \leq m-1\right\} \cup\left\{\mathrm{v}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}\right\}$ represents the vertices in graph and graph contains $2 \mathrm{~m}+1$ number of vertices, where $\mathrm{m}=3,7,9,11 \ldots$.
$\mathrm{E}\left(\mathrm{T}_{\mathrm{m}}\right)=\left\{\mathrm{e}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{s}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\} \cup\left\{\mathrm{f}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\}$ represents the edges in graph and graph contains 3 m number of edges, where $m=3,6,9,12$..
where the edge $\left\{\mathrm{e}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\}$ represents the edge $\left\{\mathrm{v}_{\mathrm{l}} \mathrm{v}_{\mathrm{l}+1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\}$, the edge $\left\{\mathrm{s}_{1}: 1 \leq \mathrm{l} \leq \mathrm{m}-1\right\}$ represents the edge $\left\{u_{1} v_{1}: 1 \leq 1 \leq m-1\right\}$ and
$\left\{u_{1} v_{1+1}: 1 \leq l \leq m-1\right\}$. From the definition of AVD coloring,
We prove the theorem case by case:
Case 1: for $n=1$, isolated vertex. AVD coloring exist by having one colorable. But cycle C_{3} triangular snake graph does not exist.

Case 2: for $\mathrm{n}=2$, an edge. AVD coloring exist by having three colorable $\chi^{\prime \prime}(G)=3$. But cycle C_{3} triangular snake graph does not exist.
Example : Suppose for an edge the assigned colors blue(b), red(r), green(g)

Figure 1: an edge.
$\mathrm{C}\left(\mathrm{v}_{1}\right)=\{\mathrm{b}, \mathrm{r}\}, \mathrm{C}\left(\mathrm{v}_{2}\right)=\{\mathrm{g}, \mathrm{r}\} \mathrm{C}\left(\mathrm{v}_{1}\right) \neq \mathrm{C}\left(\mathrm{v}_{2}\right)$
AVD - coloring with distinguishable vertices.
Hence for $\mathrm{n}<3$ the cycle C_{3} does not exist. Hence triangular snake graph also does not exist. But AVD coloring is possible by taking 1 and 3 colorable.
Case 3: for $n \geq 3$ the cycle C_{3} exist. Hence triangular snake graph also exists. AVD coloring is possible.
Case a: for $=3$, it forms a cycle C_{3}. One triangular snake graph exists by having 3 vertices and 3 edges. AVD coloring of triangular snake graph C_{3} is χ " $(\mathrm{G})=3$.

Figure 2: C_{3}
Example: Consider a cycle C_{3} having red(r), blue(b), green(g). From the definition of AVD- coloring we get,

$$
\begin{gathered}
C\left(\mathrm{v}_{1}\right)=\{\mathrm{g}, \mathrm{r}, \mathrm{~b}\} \\
C\left(v_{2}\right)=\{g, b, r\} \\
C\left(v_{1}\right) \neq C\left(v_{2}\right)
\end{gathered}
$$

AVD - coloring with distinguishable vertices.
Case b: for $n>3$, it forms a cycle C_{3}. more number of triangular snake graph exist by having $2 m+1$ number of vertices, where $m=3,7,9,11 \ldots$ and $3 m$ number of edges, where $m=3,6,9,12$.. The graph T_{m} is colored properly with 5 colors. Since triangular snake graph T_{m} has $3 m$ edges and $2 m+1$ vertices. Each T_{m} is of the form $m C_{3}$'s connected with $(n-1)$ paths. Each C_{3} is $3-$ colorable and hence T_{m} is 5 colorable. Each cycle of three vertices can be colored with three colors.

As seen in the graph, the path can be clearly inserted between the $b C_{3}$. Here, (u) is the collection of colours that make up a vertex u. There is a difference between two vertices $u, v \in v(G)$ when $C(u) \neq C(v)$. If not, rearrange the designated colours until then in order to obtain vertices that can be distinguished. The correct AVD-total colorings are one with recognizable vertices. Therefore $T_{m}=\Delta(G)+1 \forall n>3$. Example : let us assign few colors to figure 3,to apply AVD coloring, $\operatorname{red}(r), \operatorname{blue}(b), \operatorname{green}(g), y e l l o w(y), \operatorname{black}(b l)$

Figure 3: $m=3,3 C_{3}{ }^{\prime} s$ are attached.

$$
\begin{gathered}
C\left(v_{1}\right)=\{g, r, b\} \\
C\left(v_{2}\right)=\{g, b, r\}, \\
C\left(v_{3}\right)=\{r, b l, b, g, y\}, \\
C\left(v_{4}\right)=\{y, r, b, g, b l\}, \\
C\left(v_{5}\right)=\{g, y, b\}, \\
C\left(v_{6}\right)=\{g, r, b\}, \\
C\left(v_{7}\right)=\{b, g, b l\} \\
C\left(v_{3}\right) \neq C\left(v_{4}\right), \\
\{r, b l, b, g, y\} \neq\{y, r, b, g, b l\}
\end{gathered}
$$

Here $C(u) \neq C(v)$ AVD - coloring with distinguishable vertices.

Theorem 2

Let $D T_{m}$ be double triangular snake graph of order $n>4$, then χ " $\left.D T_{m}\right)=7$.
Proof:
Let $V\left(D T_{m}\right)=\left\{u_{l}, w_{l}: 1 \leq l \leq n-1\right\} \cup\left\{v_{l}: 1 \leq l \leq n\right\}$ and
$E\left(D T_{m}\right)=\left\{\begin{array}{c}\left.e_{l}: 1 \leq l \leq n-1\right\} \cup\left\{e_{l}^{\prime}: 1 \leq l \leq n-1\right\} \cup \\ \left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\} \cup\left\{s_{l}: 1 \leq l \leq n-1\right\} \cup\left\{s_{l}^{\prime}: 1 \leq l \leq n-1\right\}\end{array}\right.$, where the edges $\left\{e_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{v_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}^{\prime}: 1 \leq l \leq n-1\right\}$, the edges $\left\{u_{l} v_{l}: 1 \leq l \leq n-1\right\}$, the edges $\left\{e_{l}^{\prime \prime}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{u_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$, the edges $\left\{s_{l}: 1 \leq l \leq n-1\right\}$ represents the edge $\left\{w_{l} v_{l}: 1 \leq l \leq n-1\right\}$ and the edges $\left\{s_{l}^{\prime}: 1 \leq l \leq n-1\right\}$ represents the edges $\left\{w_{l} v_{l+1}: 1 \leq l \leq n-1\right\}$. Using the definition of AVD coloring we are proving this theorem by cases:

Case 1: for $n=1$, isolated vertex. AVD coloring exists by having one colorable. But cycle C_{3} double triangular snake graph does not exist.
Case 2: for $\mathrm{n}=2$, an edge. AVD coloring exist by taking $\chi^{\prime \prime}(G)=2$. But cycle C_{3} double triangular snake graph does not exist.
Case 3: for $n=3$. A cycle C_{3}. AVD coloring exists by having three colorable χ " $(G)=3$. But double triangular snake graph does not exist.
Case 4: for $n \geq 4$. A double triangular snake graph exists. AVD graph coloring is applied case by case:
Case a: for $n=4$. A double Cycle C_{3} exist by having 4 vertices and 5 edges. Also AVD coloring exist by having $\chi^{\prime \prime}(G)=4$
Example: the graph takes AVD 4 coloring , red (r), blue $(b), \operatorname{green}(g)$, yellow (y)

Figure 4: $m=1$, Double triangle triangular snake.

$$
\begin{gathered}
C\left(v_{1}\right)=\{g, r, b\}, \\
C\left(v_{2}\right)=\{g, y, r, b\}, \\
C\left(v_{3}\right)=\{b, r, y\}, \\
C\left(v_{4}\right)=\{b, g, r, y\} \\
\{g, y, r, b\} \neq\{b, g, r, y\} \\
C\left(v_{2}\right) \neq C\left(v_{4}\right),
\end{gathered}
$$

Here $C(u) \neq C(v)$ AVD - coloring with distinguishable vertices.
Case b: In this case for $n>4$, double triangular snake graph takes $3 m+1$ vertices, where $m=4,7,10,13 \ldots$ and $5 m$ edges where $m=5,10,15,20,25$.
This double triangular graph has the appropriate coloration with $\chi \prime(G)=5$. Every $D T_{m}$ is composed of m double C_{3} linked by ($n-1$) pathways. Since each double C_{3} has a color of $5, D T_{m}$ has a color of 7 . Five colors can be used to color each double cycle with four vertices. As seen in the graph, the path may be clearly inserted in between the double cycle C_{3}.
The collection of colors present in a vertex u is denoted by (u). There are two identifiable vertices $u, v \in v(G)$ when $C(u) \neq C(v)$. Until then, rearrange the allocated colours to obtain recognisable vertices. An AVD-total colouring that has recognisable vertices is the correct one. Thus If $n>4$, then $T_{m}=\Delta(G)+1$.
Example : Let us consider three double triangular snake graph, having 10 vertices and 15 edges. From the definition of AVD-coloring we get,

Figure 5: $m=3,3$ Double triangular $C_{3}{ }^{\prime} s$ are attached. Here $\operatorname{red}(r)$, blue (b), black (bl), light blue (lb), purple (p), yellow (y), green (g).

$$
\begin{gathered}
C\left(v_{1}\right)=\{y, r, p\}, \\
C\left(v_{2}\right)=\{y, g, b l, b\}, \\
C\left(v_{3}\right)=\{b, r, l b, \\
C\left(v_{4}\right)=\{p, y, b, l b, g, r, b\} \\
C\left(v_{5}\right)=\{g, r, b\}, \\
C\left(v_{6}\right)=\{b, r, l b\}, \\
C\left(v_{7}\right)=\{b l, g, r, l, p, y, b\}, \\
C\left(v_{8}\right)=\{p, r, b\}, \\
C\left(v_{9}\right)=\{b, r, g\}, \\
C\left(v_{10}\right)=\{b, l b, y, g\} .
\end{gathered}
$$

Here $C(u) \neq C(v)$ AVD - coloring with distinguishable vertices.

Theorem 3

Let $A T_{n}$ be the alternate triangular snake graph, then χ " $\left(A T_{m}\right)>4$
Proof: Let $V\left(A T_{m}\right)=\left\{u_{l}: l \in\{1,2, \ldots, n\}\right\} \cup\left\{v_{l}: l \in\{1,3,5 \ldots, n-2\}\right\}$ represents vertices in alternate triangular graph and graph contain $3 m$ number of vertices $m=3,6,9,12 \ldots$ and
$\operatorname{Let} E\left(A T_{m}\right)=\left\{e_{l}: l \in\{1,2, \ldots, n-1\}\right\} \cup\left\{e_{l}^{\prime}: l \in\{1,3, \ldots, n-2\}\right\} \cup\left\{e_{l}^{\prime \prime}: l \in\{1,3, \ldots, n-2\}\right\}$,
Where the edges $\left\{e_{l}: l \in\{1,2, \ldots, n\}\right\}$ represents the edges $\left\{u_{l} u_{l+1}: l \in\{1,2, \ldots, n-1\}\right\}$ the edges $\left\{e_{l}^{\prime}: l \in\right.$ $\{1,3, \ldots, n-2\}\}$ represents the edges $\left\{u_{1} v_{1}: l \in\{1,3, \ldots, n-2\}\right\}$, the edges
$\left\{e_{l}^{\prime \prime}: l \in\{1,3, \ldots, n-2\}\right\}$ represents the edges $\left\{v_{l} u_{l+1}: l \in\{1,3, \ldots, n-2\}\right\}$. Here the alternate triangular graph contains total $4 m-1$ edges, where $m=3,7,11,15, \ldots$

From the definition of AVD coloring we prove the theorem case by case:

Case 1: when $n=1$. Isolated vertex, an alternative triangular snake graph does not exist. Takes AVD-coloring. Case 2: When $n=2$. An edge, takes AVD-coloring but alternative triangular graph does not exist.
Case 3: when $n=3$. Cycle C_{3}, consists of 3 vertices and 3 edges but an alternative triangular graph does exist. Graph takes $\chi^{\prime \prime}(G)=3$
Case 4: when $n \geq 4$, this case is proved by having subcases:
Case a: when $n=4$ in this case graph exists with 4 vertices and 4 edges. A cycle C_{3} with an extra edge will be attached to a triangle. But alternative triangular graph does not exist, to become alternative triangular graph two cycle of $C_{3}{ }^{\prime} s$ are placed between one edge.
Example: cycle C_{3} is attached with an edge.

Figure 6: C_{3} with an edge

$$
\begin{gathered}
C\left(v_{1}\right)=\{g, r, b\}, \\
C\left(v_{2}\right)=\{g, b, r\}, \\
C\left(v_{3}\right)=\{b, g, r, y\}, \\
C\left(v_{4}\right)=\{b, y\} \\
C\left(v_{1}\right) \neq C\left(v_{2}\right), \\
C\left(v_{3}\right) \neq C\left(v_{4}\right)
\end{gathered}
$$

Here $C(u) \neq C(v)$ AVD - coloring with distinguishable vertices.
Case b: when $n>4$, the alternative triangular snake graph exists by taking 3 m and $4 \mathrm{~m}-1$ number of vertices and edges as mentioned above. Since the cycle C_{3} is placed between two edges, it takes properly three colorable. Every $A T_{\mathrm{m}}$ is of the type C_{3} 's, which connects the $(n-1)$ pathways. Since each C_{3} has three colorations, $A T_{m}$ has four colorations. You can use three different colours to colour each cycle of three vertices. The path can be clearly inserted as shown in the graph, alternately, between the cycle C_{3}. The collection of colours present in a vertex u is denoted by (u). There are two identifiable vertices $u, v \in v(G)$ when $C(u) \neq C(v)$. Until then, rearrange the allocated colors to obtain recognizable vertices. An AVD-total colorings that has recognizable vertices is the correct one. Thus If $n>4$, then $A T_{m}=\Delta(\mathrm{G})+1$.
Example: consider few colors to show AVD coloring on alternative triangular snake. $\operatorname{red}(r)$, blue (b), green (g),black(bl)

Figure 7: $m=3$, Alternative triangular snake graph $A T_{m}$.

$$
\begin{gathered}
\mathrm{C}\left(\mathrm{v}_{1}\right)=\{\mathrm{g}, \mathrm{r}, \mathrm{~b}\}, \\
\mathrm{C}\left(\mathrm{v}_{2}\right)=\{\mathrm{g}, \mathrm{~b}, \mathrm{r}\}, \\
\mathrm{C}\left(\mathrm{v}_{3}\right)=\{\mathrm{bl}, \mathrm{~b}, \mathrm{r}, \mathrm{~g}\}, \\
\mathrm{C}\left(\mathrm{v}_{4}\right)=\{\mathrm{bl}, \mathrm{~b}, \mathrm{~g}, \mathrm{r}\}, \\
\mathrm{C}\left(\mathrm{v}_{5}\right)=\{\mathrm{g}, \mathrm{r}, \mathrm{~b}\}, \\
\mathrm{C}\left(\mathrm{v}_{6}\right)=\{\mathrm{r}, \mathrm{~g}, \mathrm{~b}, \mathrm{bl}\}, \\
\mathrm{C}\left(\mathrm{v}_{7}\right)=\{\mathrm{bl}, \mathrm{~b}, \mathrm{~g}, \mathrm{r}\}, \\
\mathrm{C}\left(\mathrm{v}_{8}\right)=\{\mathrm{b}, \mathrm{r}, \mathrm{~g}\}, \\
\mathrm{C}\left(\mathrm{v}_{9}\right)=\{\mathrm{r}, \mathrm{~g}, \mathrm{~b}\}
\end{gathered}
$$

Here C(u) $\neq C(v)$ AVD - coloring with distinguishable vertices.

Conclusion

In this article, we have determined AVD total chromatic number of triangular snake graph T_{m}, Double triangular snake graph DT_{m} and Alternative triangular snake graph AT_{m}. For many other graphs this work can be further extended.

References

1. Atilio Gomes Luiz, celia P. de Mello, Christiane N. Campos AVD-total-coloring of complete equipartite graphs $5^{\text {th }}$ Latin American workshop on Cliques in graphs November, 2012.
2. D. Muthuramakrishnan, G. Jayaraman Total coloring of splitting graph of path, cycle and star graphs 6(1D)(2018),659-664.
3. C.P. Mello, and V.Pedrotti, Adjacent-vertex distinguishing index total coloring of indifference graphs, mathematical contemporanea, 39(2010),101-110.
4. N. Vijayaditya, On total chromatic number of a graph, J. London Math soc.,3(2)(1971),405-408.
5. Priya, P.Padma and A. Arokia Mary. "AVD-Total-Coloring of some Simple Graphs".
6. Dharmvirinh Parmar, Pratik V.Bharat Suthar., Rainbow connection number of Triangular snake graph, Journal of Emerging Technologies and Innovative Research, 6(3)(2019),339-343.
7. C.E. Shannon, A theorem on coloring the lines of a network, J. Math.Phys.28(1949) 148-151.
8. Y.Chang et al. Adjacent vertex distinguishing total coloring of planar graphs with maximum degree 8, Discrete Math.(2020)
9. M.chen et al. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes. Inf. process. Lett.(2009).
10.K.M.B. Smitha and K. Thirusangu, Radio mean labeling of triangular snake families,2020.
10. G. Jayaraman, Deepalakshmi, On the Edge Coloring of Triangular Snake Graph Families, journal of algebraic statistics, 13(6)(2022),(1798-1802).

[^0]: Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

