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ARTICLE INFO ABSTRACT 

 Assume that a simple undirected graph is represented by G = (V, E). It is 
assumed that the correct total coloring has been done when two adjacent vertices 
have different sets of colors for the incidence edges on them and the vertex itself. 
This study investigates the total coloring graphs of adjacent vertex distinguishing 
(AVD) systems. Moreover, we determine the triangle families of the AVD-total 
color number of Snake Graph. 
 
Keywords: Triangular snake graph, AVD total coloring. 

 
Introduction 

 
Coloring of graphs is one of the most important, well-known, and actively studied subfields of graph theory. 
The graph coloring problem is one of the most researched because of its theoretical and practical significance. 
As a result, experts and scholars from all over the world have studied this topic in great detail. Certain network 
issues can be addressed with adjacent-vertex differentiating edge coloring and adjacent-vertex distinguishing 
total coloring. 
Colors can be assigned to the edges, vertices, or both of a graph G. The vertex coloring is considered accurate 
if no two vertices acquire the same color. The literature contains a wide range of suitable colorings, including 
vertex coloring. a-coloring, b-coloring, edge coloring, list coloring, and so on are some examples of coloring 
techniques. The entire coloring of graphs is the main focus of the current effort. A total coloring of G is a 
function f: S → C where S = V(G) ∪ E)(G) and C is a set of colors to satisfies the given Conditions. 
 
No vertex next to it receives the same color more than once. 
The color of no two adjacent borders is the same. 
None of its edges have the same color applied to its end vertices. 
The least cardinality k that allows G to have a total coloring by k-colors is known as the total chromatic number, 
or χ"(G) of a graph. 
 
Definition 

 
Chromatic number: 
If G has a valid vertex coloring, then the chromatic number of G is the minimal number of colors needed to 
color G. The chromatic number of G is represented by the symbol  
χ (G). 
 
 
Definition 

 
Total coloring:  
A graph G is said to be fully colored when all of its edges and vertices have the same color applied to them. 
 
Definition 
Total chromatic number:  
The symbol χ"(G) represents total- chromatic number, which is the bare minimum number of colors required 
to get color G. 
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Definition 
AVD-total coloring:  
G is a basic graph, and ϕ represents G's overall coloring. ϕ represents an AVD-total color. In the event when ∀ 
u,v∈V(G) uv adjacent, C(u)≠C(v). In this case, C(u): color set that appears in a vertex u. 
 
Definition  
Triangular Snake 𝐓𝐦: [6]A Triangular Snake Tm is obtained from a path u1, u2, u3, … , um  by joining ui and 
ui+1 to a new vertex vi for 1 ≤ i ≤ m − 1. 
 
Definition  
Double Triangular snake 𝐃(𝐓𝐦): [6] Two triangular snakes with a common path make up the double 
triangular snake D(Tm) 
 
Definition  
Alternate Triangular Snake 𝐀𝐓𝐦 :[6]An Alternate Triangular Snake ATm is obtained from a path 
u1, u2, u3, … , um by joining  ui and ui+1 (alternatively) to a new vertex vi. 
In the present paper we focusing on AVD coloring for triangular snake graph Tm, Double triangular snake 
graph DTm and Alternative triangular snake graph ATm. 
 

MAIN RESULT AND DISCUSSION 
 
Theorem 1 

For any triangular snake graph 𝛘(𝐓𝐦) = {
𝐧 = 𝟑   𝛘(𝐓𝐦) 𝐢𝐬 𝟑    𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞  

∀𝐧 > 𝟑 𝛘(𝐓𝐦) 𝐢𝐬 𝟓
or 𝛘(𝐓𝐦) = ∆(𝐆) + 𝟏 

Proof: Let V(Tm) = { ul: 1 ≤ l ≤ m − 1} ∪ { vl: 1 ≤ l ≤ m} represents the vertices in graph and graph contains 
2m + 1 number of vertices, where m = 3,7,9,11 ….   
E(Tm) =  { el: 1 ≤ l ≤ m − 1} ∪  { sl: 1 ≤ l ≤ m − 1} ∪ { fl: 1 ≤ l ≤ m − 1} represents the edges in graph and 
graph contains 3m number of edges, where m = 3,6,9,12..  
where the edge { el: 1 ≤ l ≤ m − 1} represents the edge {vlvl+1 ∶ 1 ≤ l ≤ m − 1}, the edge { sl: 1 ≤ l ≤ m − 1} 
represents the edge { ulvl: 1 ≤ l ≤ m − 1} and 
 { ulvl+1: 1 ≤ l ≤ m − 1}. From the definition of AVD coloring,  
We prove the theorem case by case: 
 
Case 1: for n = 1, isolated vertex. AVD coloring exist by having one colorable. But cycle C3 triangular snake 
graph does not exist. 
 
Case 2: for n = 2 , an edge. AVD coloring exist by having three colorable χ"(G) = 3. But cycle C3 triangular 
snake graph does not exist. 
Example : Suppose for an edge the assigned colors blue(b), red(r), green(g) 

 
Figure 1: an edge. 

 
C(v1) = {b, r},C (v2) = {g, r} C(v1) ≠ C(v2) 
AVD - coloring with distinguishable vertices. 
Hence for n < 3 the cycle C3 does not exist. Hence triangular snake graph also does not exist. But AVD coloring 
is possible by taking 1 and 3 colorable. 
Case 3: for n ≥ 3 the cycle C3 exist. Hence triangular snake graph also exists. AVD coloring is possible. 
Case a: for = 3 , it forms a cycle C3. One triangular snake graph exists by having 3 vertices and 3 edges. AVD 
coloring of triangular snake graph C3 is χ"(G) = 3. 
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Figure 2: C3 

 
Example: Consider a cycle C3 having red(r), blue(b), green(g). From the definition of AVD- coloring we get, 

C(v1) = {g, r, b} 
𝐶(𝑣2) = {𝑔, 𝑏, 𝑟} 
𝐶(𝑣1) ≠ 𝐶(𝑣2) 

 
AVD - coloring with distinguishable vertices. 
 
Case b: for 𝑛 > 3, it forms a cycle 𝐶3 . more number of triangular snake graph exist by having 2𝑚 + 1  number 
of vertices, where 𝑚 = 3,7,9,11 ….  and 3𝑚 number of edges, where 𝑚 = 3,6,9,12.. The graph 𝑇𝑚 is colored 
properly with 5 colors. Since triangular snake graph 𝑇𝑚 has 3𝑚 edges and 2𝑚 + 1 vertices. Each 𝑇𝑚   is of the 
form   𝑚 𝐶3’s connected with (𝑛 − 1) paths. Each 𝐶3 is 3 – colorable and hence 𝑇𝑚 is 5 colorable. Each cycle of 
three vertices can be colored with three colors.  
 
As seen in the graph, the path can be clearly inserted between the𝑏𝐶3. Here, (𝑢) is the collection of colours that 
make up a vertex u. There is a difference between two vertices 𝑢, 𝑣 ∈ 𝑣(𝐺) when 𝐶(𝑢) ≠ 𝐶(𝑣). If not, rearrange 
the designated colours until then in order to obtain vertices that can be distinguished. The correct AVD-total 
colorings are one with recognizable vertices. Therefore  𝑇𝑚 = ∆(𝐺) + 1 ∀ 𝑛 > 3. 
Example : let us assign few colors to figure 3,to apply AVD coloring, 
𝑟𝑒𝑑(𝑟), 𝑏𝑙𝑢𝑒(𝑏), 𝑔𝑟𝑒𝑒𝑛(𝑔), 𝑦𝑒𝑙𝑙𝑜𝑤(𝑦), 𝑏𝑙𝑎𝑐𝑘(𝑏𝑙)  

 
Figure 3 : 𝑚 = 3,   3𝐶3′𝑠 are attached. 

𝐶(𝑣1) = {𝑔, 𝑟, 𝑏} 
𝐶(𝑣2) = {𝑔, 𝑏, 𝑟}, 

𝐶(𝑣3) = {𝑟, 𝑏𝑙, 𝑏, 𝑔, 𝑦}, 
𝐶(𝑣4) = {𝑦, 𝑟, 𝑏, 𝑔, 𝑏𝑙}, 

𝐶(𝑣5) = {𝑔, 𝑦, 𝑏}, 
𝐶(𝑣6) = {𝑔, 𝑟, 𝑏}, 
𝐶(𝑣7) = {𝑏, 𝑔, 𝑏𝑙} 
𝐶(𝑣3)  ≠  𝐶(𝑣4), 

{𝑟, 𝑏𝑙, 𝑏, 𝑔, 𝑦} ≠ {𝑦, 𝑟, 𝑏, 𝑔, 𝑏𝑙} 
Here 𝐶(𝑢) ≠ 𝐶(𝑣) AVD - coloring with distinguishable vertices. 

 
Theorem 2 
Let 𝑫𝑻𝒎 be double triangular snake graph of order 𝒏 > 𝟒,  then 𝜒"(𝑫𝑻𝒎) = 𝟕. 
Proof:  
Let 𝑉(𝐷𝑇𝑚) = {𝑢𝑙 , 𝑤𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {𝑣𝑙: 1 ≤ 𝑙 ≤ 𝑛} and  
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𝐸(𝐷𝑇𝑚) =  {
𝑒𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {𝑒𝑙

′: 1 ≤ 𝑙 ≤ 𝑛 − 1} ∪

{𝑒𝑙
′′: 1 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {𝑠𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} ∪ {𝑠𝑙

′: 1 ≤ 𝑙 ≤ 𝑛 − 1}
 , where the edges {𝑒𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} 

represents the edge {𝑣𝑙𝑣𝑙+1: 1 ≤ 𝑙 ≤ 𝑛 − 1}, the edges {𝑒𝑙
′: 1 ≤ 𝑙 ≤ 𝑛 − 1}, the edges {𝑢𝑙𝑣𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1}, the 

edges {𝑒𝑙
′′: 1 ≤ 𝑙 ≤ 𝑛 − 1} represents the edge {𝑢𝑙𝑣𝑙+1: 1 ≤ 𝑙 ≤ 𝑛 − 1}, the edges {𝑠𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} represents 

the edge {𝑤𝑙𝑣𝑙: 1 ≤ 𝑙 ≤ 𝑛 − 1} and the edges { 𝑠𝑙
′: 1 ≤ 𝑙 ≤ 𝑛 − 1} represents the edges {𝑤𝑙𝑣𝑙+1: 1 ≤ 𝑙 ≤ 𝑛 − 1}. 

Using the definition of AVD coloring we are proving this theorem by cases: 
 
Case 1: for 𝑛 = 1, isolated vertex. AVD coloring exists by having one colorable. But cycle 𝐶3 double triangular 
snake graph does not exist. 
Case 2: for n = 2 , an edge. AVD coloring exist by taking 𝜒"(𝐺) = 2. But cycle 𝐶3 double triangular snake graph 
does not exist. 
Case 3: for 𝑛 = 3. A cycle 𝐶3. AVD coloring exists by having three colorable 𝜒"(𝐺) = 3. But double triangular 
snake graph does not exist. 
Case 4: for 𝑛 ≥ 4. A double triangular snake graph exists. AVD graph coloring is applied case by case: 
Case a: for 𝑛 = 4. A double Cycle 𝐶3 exist by having 4 vertices and 5 edges. Also AVD coloring exist by having  
𝜒"(𝐺) = 4 
Example: the graph takes AVD 4 coloring , 𝑟𝑒𝑑(𝑟), 𝑏𝑙𝑢𝑒(𝑏), 𝑔𝑟𝑒𝑒𝑛(𝑔), 𝑦𝑒𝑙𝑙𝑜𝑤(𝑦) 

 
Figure 4: 𝑚 = 1, Double triangle triangular snake. 

𝐶(𝑣1) = {𝑔, 𝑟, 𝑏}, 
𝐶(𝑣2) = {𝑔, 𝑦, 𝑟, 𝑏}, 

𝐶(𝑣3) = {𝑏, 𝑟, 𝑦}, 
𝐶(𝑣4) = {𝑏, 𝑔, 𝑟, 𝑦} 

{𝑔, 𝑦, 𝑟, 𝑏} ≠  {𝑏, 𝑔, 𝑟, 𝑦} 
𝐶(𝑣2)  ≠ 𝐶(𝑣4), 

Here 𝐶(𝑢) ≠ 𝐶(𝑣) AVD - coloring with distinguishable vertices. 
 
Case b: In this case for 𝑛 > 4, double triangular snake graph takes 3𝑚 + 1 vertices, where 𝑚 = 4,7,10,13….and 
5𝑚 edges where 𝑚 = 5,10,15,20,25. 
This double triangular graph has the appropriate coloration with χ"(G)=5. Every 𝐷𝑇𝑚  is composed of m double 
𝐶3 linked by (𝑛 − 1) pathways. Since each double 𝐶3 has a color of 5, 𝐷𝑇𝑚 has a color of 7. Five colors can be 
used to color each double cycle with four vertices. As seen in the graph, the path may be clearly inserted in 
between the double cycle 𝐶3.  
The collection of colors present in a vertex u is denoted by (𝑢). There are two identifiable vertices 𝑢, 𝑣 ∈ 𝑣(𝐺) 
when 𝐶(𝑢) ≠ 𝐶(𝑣). Until then, rearrange the allocated colours to obtain recognisable vertices. An AVD-total 
colouring that has recognisable vertices is the correct one. Thus  If 𝑛 > 4, then 𝑇𝑚 = ∆(𝐺) + 1. 
Example : Let us consider three double triangular snake graph, having 10 vertices and 15 edges. From the 
definition of AVD-coloring we get, 
 

 
Figure 5: 𝑚 = 3, 3 𝐷𝑜𝑢𝑏𝑙𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐶3′𝑠 are attached. Here 

𝑟𝑒𝑑(𝑟), 𝑏𝑙𝑢𝑒(𝑏), 𝑏𝑙𝑎𝑐𝑘(𝑏𝑙), 𝑙𝑖𝑔ℎ𝑡 𝑏𝑙𝑢𝑒(𝑙𝑏), 𝑝𝑢𝑟𝑝𝑙𝑒(𝑝), 𝑦𝑒𝑙𝑙𝑜𝑤(𝑦), 𝑔𝑟𝑒𝑒𝑛(𝑔). 
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𝐶(𝑣1) = {𝑦, 𝑟, 𝑝}, 
𝐶(𝑣2) = {𝑦, 𝑔, 𝑏𝑙, 𝑏}, 

𝐶(𝑣3) = {𝑏, 𝑟, 𝑙𝑏}, 
𝐶(𝑣4) = {𝑝, 𝑦, 𝑏, 𝑙𝑏, 𝑔, 𝑟, 𝑏} 

𝐶(𝑣5) = {𝑔, 𝑟, 𝑏}, 
𝐶(𝑣6) = {𝑏, 𝑟, 𝑙𝑏}, 

𝐶(𝑣7) = {𝑏𝑙, 𝑔, 𝑟, 𝑙𝑏, 𝑝, 𝑦, 𝑏}, 
𝐶(𝑣8) = {𝑝, 𝑟, 𝑏}, 
𝐶(𝑣9) = {𝑏, 𝑟, 𝑔}, 

𝐶(𝑣10) = {𝑏, 𝑙𝑏, 𝑦, 𝑔} 
Here 𝐶(𝑢) ≠ 𝐶(𝑣) AVD - coloring with distinguishable vertices. 

 
Theorem 3 
Let 𝐴𝑇𝑛 be the alternate triangular snake graph, then 𝜒"(𝐴𝑇𝑚) > 4 
Proof: Let 𝑉(𝐴𝑇𝑚) = {𝑢𝑙: 𝑙 ∈ {1,2, … , 𝑛}} ∪ {𝑣𝑙: 𝑙 ∈ {1,3,5 … , 𝑛 − 2}} represents vertices in alternate triangular 
graph and graph contain 3𝑚 number of vertices 𝑚 = 3,6,9,12 … and  

Let 𝐸(𝐴𝑇𝑚) = {𝑒𝑙: 𝑙 ∈ {1,2, … , 𝑛 − 1}} ∪ {𝑒𝑙
′: 𝑙 ∈ {1,3, … , 𝑛 − 2}} ∪ {𝑒𝑙

": 𝑙 ∈ {1,3, … , 𝑛 − 2}}, 
Where the edges  {𝑒𝑙: 𝑙 ∈ {1,2, … , 𝑛}}  represents the edges  {𝑢𝑙𝑢𝑙+1: 𝑙 ∈ {1,2, … , 𝑛 − 1}}  the edges {𝑒𝑙

′: 𝑙 ∈
{1,3, … , 𝑛 − 2}} represents the edges  {𝑢𝑙𝑣1: 𝑙 ∈ {1,3, … , 𝑛 − 2}}, the edges  

{𝑒𝑙
": 𝑙 ∈ {1,3, … , 𝑛 − 2}} represents the edges {𝑣𝑙𝑢𝑙+1: 𝑙 ∈ {1,3, … , 𝑛 − 2}}. Here the alternate triangular graph 

contains total 4𝑚 − 1 edges, where 𝑚 = 3,7,11,15, … 
 
From the definition of AVD coloring we prove the theorem case by case: 
Case 1: when 𝑛 = 1. Isolated vertex, an alternative triangular snake graph does not exist. Takes AVD-coloring. 
Case 2: When 𝑛 = 2. An edge, takes AVD-coloring but alternative triangular graph does not exist. 
Case 3: when 𝑛 = 3. Cycle 𝐶3, consists of 3 vertices and 3 edges but an alternative triangular graph does exist. 
Graph takes 𝜒"(𝐺) = 3 
Case 4: when 𝑛 ≥ 4, this case is proved by having subcases: 
Case a: when 𝑛 = 4 in this case graph exists with 4 vertices and 4 edges. A cycle 𝐶3 with an extra edge will be 
attached to a triangle. But alternative triangular graph does not exist, to become alternative triangular graph 
two cycle of 𝐶3′𝑠 are placed between one edge. 
Example: cycle 𝐶3 is attached with an edge.  

 
Figure 6: 𝐶3 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑑𝑔𝑒 

𝐶(𝑣1) = {𝑔, 𝑟, 𝑏}, 
𝐶(𝑣2) = {𝑔, 𝑏, 𝑟}, 

𝐶(𝑣3) = {𝑏, 𝑔, 𝑟, 𝑦}, 
𝐶(𝑣4) = {𝑏, 𝑦} 

𝐶(𝑣1)  ≠  𝐶(𝑣2), 
𝐶(𝑣3)  ≠  𝐶(𝑣4) 

Here 𝐶(𝑢) ≠ 𝐶(𝑣) AVD - coloring with distinguishable vertices. 
 
Case b: when 𝑛 > 4, the alternative triangular snake graph exists by taking 3m and 4m-1 number of vertices 
and edges as mentioned above. Since the cycle 𝐶3 is placed between two edges, it takes properly three colorable. 
Every 𝐴𝑇m is of the type  𝐶3’s, which connects the (𝑛 − 1) pathways. Since each 𝐶3 has three colorations, 𝐴𝑇𝑚 
has four colorations. You can use three different colours to colour each cycle of three vertices. The path can be 
clearly inserted as shown in the graph, alternately, between the cycle 𝐶3. The collection of colours present in a 
vertex u is denoted by (𝑢). There are two identifiable vertices 𝑢, 𝑣 ∈ 𝑣(𝐺) when 𝐶(𝑢) ≠ 𝐶(𝑣). Until then, 
rearrange the allocated colors to obtain recognizable vertices. An AVD-total colorings that has recognizable 
vertices is the correct one. Thus If 𝑛 > 4, then 𝐴𝑇𝑚= ∆(G)+1. 
Example: consider few colors to show AVD coloring on alternative triangular snake. 
𝑟𝑒𝑑(𝑟), 𝑏𝑙𝑢𝑒(𝑏), 𝑔𝑟𝑒𝑒𝑛(𝑔), 𝑏𝑙𝑎ck(bl) 
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Figure 7 : m = 3, Alternative triangular snake graph  ATm. 

C(v1) = {g, r, b}, 
C(v2) = {g, b, r}, 

C(v3) = {bl, b, r, g}, 
C(v4) = {bl, b, g, r}, 

C(v5) = {g, r, b}, 
C(v6) = {r, g, b, bl}, 
C(v7) = {bl, b, g, r}, 

C(v8) = {b, r, g}, 
C(v9) = {r, g, b} 

Here C(u) ≠ C(v) AVD - coloring with distinguishable vertices. 
 

Conclusion 
 
In this article, we have determined AVD total chromatic number of triangular snake graph Tm, Double 
triangular snake graph DTm and Alternative triangular snake graph ATm. For many other graphs this work can 
be further extended. 
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