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ARTICLE INFO ABSTRACT 

 Being a sector of machine learning, deep learning aims to give robots abilities 
much like humans in learning, perception and intelligence. In the fields of image 
processing, GAN (Generative Adversarial Network) has become an important 
branch of deep learning. Now, deep learning generative networks allow for the 
generation of good quality synthetic data that still keep the same statistics as the 
original data. Keeping information secure in various important sectors like 
education, banking and others is very important as biometrics are adopted more 
and more for authenticity. During periods of large demand, synthetic biometric 
datasets come in very useful for checking and developing biometric systems. The 
amount of high-quality data, the training process’s reliability and updates to the 
architecture are part of the evaluation too. Generative Adversarial Networks 
(GAN) is one of the most reliable frameworks for making realistic synthetic data. 
This study reviews several GAN architectures; the loss function they use and the 
common designs as well as fields of application and also looks at how they help in 
biometrics. Using unique characteristics from the body like fingerprints, face 
details and iris patterns, biometric systems now commonly use deep learning 
models. The research also looks at how GAN variations can be used in face, iris, 
fingerprint and palmprint identification. The purpose of this paper is to discuss 
the GAN-based methods in biometrics by systematically comparing these models 
and how they are used. 
 
Keywords: Biometric traits, GAN, Image processing, GAN models. 

 
1. INTRODUCTION 

 
Machine learning means building models to carry out classification, regression, prediction and clustering tasks. 
They are generally applied in image processing, with the aim of enhancing image super-resolution. Even so, 
machine learning algorithms that depend on prior knowledge encounter difficulties like the need for humans 
to change and find the optimal settings. These problems are being tackled by developing deep learning 
approaches like CNNs. Deep learning relying on Deep Neural Networks (DNNs) improves both representation 
and reasoning, yet it has problems with image recognition, medical diagnosis and biometric authentication 
because data is not always plentiful. Traditional generative models, such as Gaussian Mixture, Restricted 
Boltzmann Machine, Naive Bayes, and Hidden Markov Model, rely on maximum likelihood estimates, which 
may not accurately capture the complexity of real data distributions. Deep generative models, such as 
generative adversarial networks (GANs), can automatically acquire all functions of any dataset and data type. 
GANs [1] are developed using maximum likelihood and parametrized models to handle the toughness of real 
data distribution through adversarial learning between a discriminator and a generator. They do well at making 
data look similar to real data and producing various types of information which helps computer vision with 
data synthesis. They have a wide range of uses in music, semi-supervised learning, art, missing data, 
unsupervised learning and drug discovery. They work to protect privacy by both defending against and dealing 
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with privacy concerns. Studies on GANs are broadening, with a focus on perfecting their training and using 
GANs for new applications. [2][3][4] 
Because of GANs, building fake biometric data has become possible which is useful for testing and improving 
biometric systems in many situations. GANs save resources and can produce many different biometric samples 
[5] which helps them deal with problems caused by data distortion and corruption. They are also helpful in 
producing fake biometrics which reduces concerns about privacy with real ones. GANs [1] consist of two neural 
networks that compete with each other to produce real samples that look the same. They use the minmax 
approach, requiring the organizations to increase their particular strengths so that the results are equal for each 
side. With GANs, problems like creating images from text descriptions, getting high-quality photos, detecting 
objects and returning images matching a pattern have been successfully resolved. Generative adversarial 
networks, have an advantage over other generative models because they use parallel generation to build 
samples in Fully Visible Belief Networks. Unlike other models, GANs are not based on Markov chains and 
produce better samples. The survey seeks to place recent progress in GAN research within the context of various 
GAN models and how they resolve the main difficulties in training them. The study looks at the different 
structures of GAN and explains their uses, especially in biometrics. 
 

2. GENERATIVE ADVERSARIAL NETWORK 
 
GANs can create new data that looks similar to the training data [17]. Unsupervised ML techniques using GAN 
networks are based on using a generator and a discriminator network. A GAN is trained using two players (the 
discriminator and the generator) that each want to win at the expense of the other. Both methods try to create 
data that is difficult to distinguish from the original data in the datasets. The Generator, a neural network with 
hidden layers, activation and a loss function, follows unsupervised learning and produces fraudulent images 
based on probabilistic representation. Meanwhile, the discriminator which has supervised learning, classifies 
the images produced by the Generator as ―not real and notifies whether the artificial images are genuine or 
not. In this scenario, the models are trained with data until their accuracy reaches the desired standard (Figure 
1). Every time, the generator is made to produce clearer images and the discriminator is skilled at telling which 
images are real and which are from the generator. Once the generator makes the discriminator laugh, the 
training finishes and we can say that a generalized GAN model has been created. 
 

 
Figure 1: Architecture of Generative Adversarial Network 

 
GAN Its goal is to identify samples created by the training data from those produced by the Generator model 
which uses a fixed-length random input. GANs are based on a minimax game and the Generator produces 
samples without any help. To give the generative process variation, a vector is randomly chosen from the 
Gaussian circulation. A latent space or hidden variables [2], is a way to present the main aspects of how 
information is organized. At first, it looked like GANs had only one solution, but if neither player can improve 
after losing, Nash Harmony (NE) is the result. Visually, there is a network that handles art and one that forges 
it. To generate realistic visuals, G (generator) in GAN literature creates forgeries. The discriminator, D, can tell 
apart both true and fake images. The generator improves by interacting with the discriminator, studying both 
real images and made-up images. Because the discriminator provides the ground truth, the generator is taught 
using the same error information which leads to better fake images. 
If the picture is correctly organized, the Discriminator is paid, while the Generator is penalized and forced to 
rebalance its weight. If the data is erroneously categorised, the discriminator is penalized and forced to adjust 
its weights. The distribution of false photos starts to match that of actual images, and the Discriminator starts 
to categorize an image as fake or real with a probability of 0.5. 
In this minimax game the generator (G) tries to maximise the loss of the discriminator (D) while the 
discriminator tries to minimise its reward V (D, G). While D is a function to separate Xfake and genuine data 
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Xreal, G is a function to operate a latent space z to make fake data that resembles real data, Xfake. Till D cannot 
tell the difference between Xfake and Xreal, G's training process is stopped. The following loss function is one 
that the generator and discriminator both attempt to reduce. 
 

(1) 
 
The initial presentation of Generalized Artificial Networks (GANs) suggests a solitary solution, known as a Nash 
Harmony (NE) result, when neither player can recover from defeat. However, some studies suggest that 
achieving NE is unlikely in practice.[6] In the context of visual data, consider a network with one authority on 
art and another art forger. The generator, or forger, creates forgeries to create realistic visuals, while the 
discriminator, or master, accepts both real and falsified photographs. The generator learns through interaction 
with the discriminator, learning from both real-image samples and fictitious samples. The discriminator uses 
a binary classifier to accurately distinguish between the samples produced by the generator and the real 
samples. The generator tries to misrepresent the output's authenticity to increase the chances of the 
discriminator making a mistake. Knowing whether the picture originated from the real or the generator 
provides a ground truth that serves as the discriminator's error signal. This improves the two players and 
production quality, leading to higher-quality forgeries. 
 
2.1 ISSUES WITH GAN 
Generative Adversarial Networks (GANs) are effective tools for producing synthetic data, but they also have 
drawbacks, such as mode collapse, delayed learning, and nonconvergence due to unstable discriminator-
generator behavior. [7] Among the main issues are: 
Mode Collapse Mode collapse means the generator often gives the same output regardless of the input in the 
latent space which limits the range of samples that are created.[8]. Even with many efforts to resolve it, this 
area remains unresolved. When the GAN creates the same output for every input, it is complete mode collapse, 
but when many of the results are similar, it is called partial mode collapse. Researchers have found that newer 
variants such as WGAN, help lessen mode collapse.[10] [11] 
Stopping Problem GANs are unable to optimize the minimax game because traditional neural networks 
require a loss function that monotonically lowers as the cost function increases. Determining whether the 
models have achieved their maximum level of training optimization is challenging since the loss function lacks 
a clear pattern.[13][14] 
Gradient Vanishing In rational learning, getting a GAN ready means keeping D and G in sync as they both 
change. An accurate D helps the model identify real data, so the gradients it produces for the G are very small. 
If the D does not work correctly, the G will not be able to tell real data from fake data.[12][8] 
Instability Combining two trained models to enhance the overall loss function in a minimax game is known 
as GAN planning. The loss scenario, in which organizations battle to find their own layout, is taken into account 
in the model design. Network desynchronization timings are delicate, and major adjustments in one 
organization may lead to additional alterations. Training effectiveness may be impacted by unstable times. In 
order to enhance network performance, recent GAN designs emphasize stabilizing training; more stable 
training is incorporated in these advancements.[17] [2] 
Evaluation Metrices There isn’t a single standard way to judge the quality of data created by GANs because 
of their special features and many uses.[15]. Because each GAN application is unique, there is no general 
consensus in the research. Many ways are used to compare origin and synthesised distributions [16], though 
the most effective ones are still being discussed. What metrics are used depends on the application and gives a 
deeper understanding of how GANs perform.[9] 
 

3. GAN MODELS 
 
Among the limitations of GANs are mode collapse, back-and-forth oscillation between G and D and players 
becoming unstable as they get stronger. Should the samples be of poor quality, D can easily tell them apart, so 
the likelihood of generated samples being real is nearly zero. As a result, G will no longer update and will 
produce a tiny gradient. It is very important to select the right hyperparameters for GAN training to converge. 
GANs have been redesigned by researchers, who suggested modifications to the training process or the 
structure of G or D. In this section, we discuss the different GAN types and what they require to develop. (Ref. 
Table 1.) 
DCGAN is a Deep Convolutional GAN [19] that doesn’t use max pooling and instead relies on completely 
connected or convolution layers. It applies downsampling and upsampling through transposed convolution 
and convolutional stride and batch norm, strided convolution and LeakyReLU layers for the discrimination 
task. When standardization layers are applied, the noise level decreases and test results improve. Using the 
Redressed Straight Unit (LeakyReLU) leads to improved results from DCGAN when working with human faces 
and the LSUN dataset. These networks are great for image generation, unsupervised learning of features and 
improving the quality of images. They help provide sharp images, make training steadier and improve the way 
information is represented. Yet, they run into problems like being sensitive to the values of hyperparameters, 
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collapsing into one mode and dealing poorly with non-image or non-structured data. In spite of these obstacles, 
DCGANs have become essential for generative modeling and have motivated many advanced types of GANs in 
image generation and restoration. The reason they are commonly used for tasks such as image synthesis, 
unsupervised learning, super-resolution, image inpainting and art generation is their skill at learning strong 
spatial hierarchies.  
CycleGAN [4] is a GAN design that makes it possible to convert images from one type to another without 
requiring paired images for training. Two GANs are used to study the mapping between two types of images, 
taking features from the input and making new images with those features. CycleGAN trains each generator on 
its own, using the second GAN’s discriminator to make a source image from a target image and the first GAN’s 
generator to make a target image from a source image. CycleGAN includes two generator models, Generator-A 
and Generator-B which can be used for artistic style transfer, photo enhancement, object transfiguration, 
medical image translation and adapting synthetic images to the real world. It provides flexibility and saves 
important structural information, but may introduce artifacts, be sensitive to training changes and struggle 
with learning small distinctions. 
CONDITIONAL GAN (cGAN) [18] is a type of generative model that uses extra information or a condition, 
in both its generator and discriminator. Thanks to this conditioning, cGANs are suitable for complex tasks such 
as turning images into other images, segmenting images, making them clearer and turning text into images. As 
a result, the generator and discriminator are pitted against each other in training, but there is still a rule that 
must be followed. Image-to-image translation, super-resolution, image inpainting, semantic segmentation and 
text-to-image synthesis all benefit from cGANs using conditioning to provide important context. Compared to 
other models, cGANs allow for better control of the output, are more relevant to the input and have more stable 
training when used in structured generation. Yet, there are issues too, including having more complex models, 
relying on good and consistent condition labels and sometimes needing datasets that match in some cases. 
Even with these limitations, cGANs are still a useful and flexible tool in today’s generative modeling when 
precise results are needed. 
WGAN [17] is a development of GAN that increases stability and better-quality images by reducing the Earth-
Mover distance computation. The generator depends on its own probability distribution and the distribution 
found in real images (Pr) to create great results. We suggest using three techniques: Jensen-Shannon 
divergence, the Wasserstein distance and the Kullback-Leibler divergence. The Wasserstein distance makes 
WGAN training more stable and helps solve problems involving gradients. WGAN includes a generator for 
making fake data from random inputs and a critic for assigning real numbers to the inputs. Wasserstein 
distance is used as the loss function, making it easier to train the model and giving clearer gradients. WGAN is 
used for making realistic images, boosting image quality, synthesizing medical images and finding unusual 
patterns. Still, it comes with some problems, for example, being sensitive to hyperparameters, taking longer to 
train and having restrictions on weight clipping.  
Pix2pix [21] GANs are a Conditional Generative Adversarial Network (cGAN) designed for paired image-to-
image translation tasks. They use an encoder-decoder architecture with convolutional layers that are down-
sampled and up-sampled to resize images. The generator network (U Net) maintains the image's dimensions 
and size using only one convolutional layer block before downsampling. The proposed discriminator design 
penalizes structure at the patch scale using a patch-wise approach. The final output of the patch GAN 
determines whether each patch in an image is authentic or forge. The patch GAN discriminator requires fewer 
training parameters, operates faster, and can be used with any image size. Pix2Pix has applications in medical 
imaging and graphics, converting sketches to photos, maps to satellite images, grayscale to color, and labels to 
scenes. However, it requires large amounts of paired training data, which can be difficult or expensive to obtain, 
and reduces generalization to unstructured tasks or unseen conditions. 
SRGAN [22] is a deep learning model designed to make upscaled photos clearer and better quality and also to 
tell if the high-resolution images are real or produced. The approach uses a perception loss function to enhance 
the quality people see, with features learned from a deep neural network. SRGAN supports creative photo 
enhancement, image-resolution enhancement and video-resolution enhancement to improve the way we see 
visual content. Even though there are obstacles with generalization, model artifacts and training, it is an 
important advance in image super-resolution. The SRGAN model includes a generator, a discriminator and a 
perceptual loss function designed to produce photo-realistic images. The generator relies on residual blocks 
with skip connections to learn the identity mappings and the discriminator tells apart true high-resolution 
pictures from those made by the generator. With SRGAN, a perceptual loss is added, mixing mean squared 
error with loss calculated from upper-level feature maps, making the generated images both more realistic and 
similar to what humans can see.  
StyleGAN [3] is an advanced GAN from NVIDIA that improves the generator by introducing noise, controlling 
style and mapping latent points to a middle latent space. With this model, you can get highly realistic and 
detailed images for both face synthesis and artistic image generation. Progressive GAN’s generator architecture 
is followed and instead of using random latent variables, the model uses a predetermined tensor. StyleGAN 
also makes use of a technique called mixing regularization which merges two latent-variable styles during 
training. The generator architecture adds a mapping network and adaptive instance normalization (AdaIN) 
layers to control the style at various levels during image synthesis. StyleGAN is used to produce photorealistic 
faces, artwork, fashion designs, augment data sets and run simulations for forensic work. Despite some flaws, 
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StyleGAN is still an important achievement in generative modeling and keeps affecting studies in AI-generated 
media. 
BEGAN [23] deals with image assessment by using boundary balance architectures. It measures the real loss 
between real and simulated reconstructions with the Wasserstein distance and BE-GAN ensures both high 
performance and a diverse dataset by using their 'boundary equilibrium GAN'. BEGAN is trained fast and 
consistently, ensuring both high quality and a good variety by using an equilibrium threshold. An autoencoder 
is also used to keep the training stable and create good quality samples. Images are produced from noise by the 
generator and the discriminator, trained on real images, tries to reconstruct them and check the loss 
experienced during this process. In BEGAN, the loss for the generator comes from the reconstruction error of 
the autoencoder and a balancing term guarantees that the generator and discriminator do not lose their 
equilibrium during training. BEGAN is especially helpful for high-quality image production, filling in damaged 
parts of images and cases where consistent GAN training matters. Even so, there are issues such as the small 
range of samples and the impact of adjusting the parameter γ which can modify how rapidly the models 
improve. 
InfoGAN [20] produces generated data with clear and useful patterns of representation. The system includes 
a generator, a discriminator and an auxiliary network that predicts a latent code from what the generator has 
created. A structured latent code is fed into the generator to control the important changes in what is created. 
The discriminator separates genuine from fake data and the auxiliary network enhances the connection 
between the latent code and samples the generator produces. A combination of the GAN loss and mutual 
information regularization in the loss function helps the generator to include understandable features in its 
output. Researchers have successfully used InfoGAN for unsupervised learning of clearly separated features, 
for creating faces with custom attributes and for producing synthetic handwriting. Even so, it encounters 
problems such as having a hard time balancing the two types of losses, the risk of unstable training and 
sensitivity to how the latent code is arranged. InfoGANs alter what GANs do by connecting more common data 
across less information. They also support changing the output, making use of font tilt, thickness and 
illumination direction to affect the MNIST dataset.  
Progressive Growing GAN (PROGAN) [2] uses multiple scales in its network and has proven to be more 
stable, have less variance and offer higher quality images than non-progressive GANs. It uses a few layers at 
once, has convergent first layers and only takes a short time to train. Yet, this method encounters the mode 
collapse problem which can make some training samples look exactly the same. As a result, it starts with basics 
and slowly adds details as the process goes on. Following this repeated process, the network is able to produce 
large, detailed images. ProGAN is designed to help improve stability and the quality of images created at high 
resolution. Both the generator and discriminator networks are trained gradually, beginning at low resolutions 
and advancing to high resolutions as more layers are added. The use of fading makes it easier to transition new 
layers at every step. ProGAN’s advantages are that it produces images of very high quality, offers great 
smoothness in the training process and produces the fewest artifacts. Even so, it can be slower to use, more 
expensive in terms of resources and has only limited control over certain features of the images.  
 

Table 1: Various GAN Models 
S.No. GAN 

MODELS 
NETWORK 
ARCHITECTURE  

LOSS FUNCTION GAN APPLICATIONS 

1.  
 

DCGAN [19] Convolution Network with 
constraint 

representation 
hierarchy in D and G, 
from object to scenes. 

Image Generation, Super 
Resolution Imaging, 
Image -Image 
Translation 

2.  Cycle GAN 
[4] 

Convolutional Mix of adversarial loss, 
potentially identity loss 
and cycle-consistency 
loss. 

style transfer, Unpaired 
image translation, 
domain adaptation. 

3.  Conditional 
GAN [18] 

Multilayer Perceptron Minimize adversarial 
loss, provide realistic 
samples, and add task-
specific conditioning 
objectives. 

Image-Image 
Translation, Convolution 
Face Generation, Text - 
Image Generation 

4.  WGAN [17] Lipschitz continuity can 
be enforced using weight 
clipping or gradient 
penalties. 

Using Wasserstein 
distance as the training 
aim leads to improved 
convergence properties. 

Synthesis of higher-
fidelity images 

5.  PixtoPix [21] PatchGAN discriminator, 
U-Net generators, 

loss of pixel-wise 
similarity, directing 
paired image 
translation, Adversarial 
loss for realism 

satellite images, 
colorization of grayscale 
photos 
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GAN variants differ depending on their goals and cGAN relies on labels to help with clearer separation and 
enhanced data production. InfoGAN works to maximize the relationship between labels and data generation. 
The authors use the Wasserstein distance to compute loss and avoid mode collapse. BEGAN relies on 
autoencoders for fair adversarial training, but DCGAN builds its architecture on deep CNNs to create top-
quality images and videos. For global dependency, ProGAN gradually raises the depth of its drills to create 
more detailed images. 
 

4. USE OF GAN IN BIOMETRICS 
 
The application of GANs is altering biometric security by improving the accuracy of validating and recognizing 
human features. GANs are used in biometrics for image completion, image improvement, style transfer, 
random biometric sample generation, and image reconstruction using identification information (Refer Table 
2.). The use of iris scans, fingerprinting, and facial recognition is critical in modern security. GANs used with 
biometrics may result in safer, more effective, and private systems. GANs are used to handle heterogeneous 
data, preserve privacy, and create reliable recognition models. It is easier for them to use dataset fragments to 
help build patterns that are difficult to create with models. Biometric traits use GANs to generate synthetic 
data, which is important for training and testing biometric recognition models. GANs may train models with 
less data by creating multiple combinations of biometric traits, allowing identification to operate effectively in 
a variety of contexts. They can copy biometric data in one modality using resources from another. Recently, 
some GANs and their modifications have been used in biometrics, for example, to generate fake handprints, 
fingerprints and irises. FingerGAN [26], PalmGAN [27] and IrisGAN [25], all have DCGAN as a base and 
FingerGAN and PalmGAN add total variation loss. Still, training these models takes a while and the outputs 
are not always clear. Shamsolmoali et al. [28] introduced G-GANISR which uses two generators to provide 
super-resolution data with improved quality. As a result, the system receives biometric data that is not very 
clear or well organized. A Conditional GAN is suitable for the synthesis of fingerprints with a given identity, 
through a little template and StyleGAN2, so that the identity is preserved and attributes are respected. GANs 
that have been improved can detect faces in any environment since they learn from one single photo. The 
method relies on a deep convolutional GAN to create irises from random data and it uses conditional GAN 
(pix2pix) for iris synthesis to boost the accuracy of recognizing the data. 
 
FINGERPRINT 
GANs help improve fingerprint recognition by making fingerprint images clearer, removing noisy parts, 
making ridges easier to see and better extracting important points. They are also applied in expanding 
fingerprint databases by making fake fingerprint pictures to improve the training data. A GAN model was 
suggested by DeepMasterPrint [33] for master fingerprint construction, but the images were not clear. Fahim 
and Jung [34] designed a new GAN Network, LGN-LSFG, that is lightweight and generates fingerprints at a 
large scale. To perform recognition, Takahashi et al. [36] resorted to applying CycleGAN to normalize the 
images. According to Pankaj Bamoriya et al., [38] generative networks from deep learning have greatly 
improved how synthetic biometric data is created, leading to fresh opportunities in training and developing 
biometric systems. According to Huang et al.,[35] they improved fingerprint images from crime scenes using 

6.  SRGAN [22] Deep residual network 
with perceptual and 
adversarial losses. 

Reduce adversarial, 
perceptual, and content 
losses for realistic 
super-resolution 
images. 

surveillance, medical 
imaging, artistic 
restoration and super 
resolution. 

7.  Style GAN 
[3] 

PG-GAN: style-based 
generator, mapping 
network, and stochastic 
variation. 

Reduce perceptual loss, 
align feature statistics, 
and enforce 
disentangled latent 
space. 

Synthesis of 
Photorealistic images, 
deepfake generations, 
artistical style transfer 

8.  BEGAN [23] encoder-decoder 
architecture, emphasizing 
balance in G and D 
training. 

Use equilibrium to 
minimize generator and 
discriminator losses. 

Synthesis of Facial 
expression, image-image 
translation 

9.  InfoGAN 
[20] 

Multilayered Perceptron Maximum mutual 
information is used to 
generate a disentangled 
representation. 

Disentangled 
representations, 
synthesis of facial 
expressions, artistical 
style transfer. 

10.  PROGAN 
[2] 

multi-resolution layers. Adversarial Loss that is 
analogous to vanilla 
GANs 

High-resolution image 
synthesis, realistic faces, 
progressive growing. 
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GAN, PatchGAN for identification and the NISTSD27 dataset for latent fingerprints. They used the same DC-
GAN setup to make fingerprint images from the PolyU and FVC 2006 Fingerprint Databases. The fingerprint 
model, FDeblur-GAN [37], was accurate in matching deblurred and ground truth images. 
 
IRIS  
There are several ways researchers study false iris recognition, using 4DCycle-GAN, DCGAN, Super-resolution 
GAN. Kakani et al. [41] built a database of iris images using segmentation, identification and generative 
adversarial learning and Bhuiyan and Czajka [42] built a Conditional StyleGAN-based model for iris synthesis. 
Zou et al. produced fake iris images using 4DCycle-GAN [39], Minaee and Abdolrashidi made realistic images 
by using DCGAN [25], Kashihara [40] improved pictures using Super-resolution GAN.  
 
FACE  
GANs have found many uses in face recognition, like producing synthetic faces, making recognition possible in 
any pose and changing facial features. CycleGAN is designed for image-to-image translation when data does 
not match and Zhang et al. [29] talk about using Conditional Adversarial Autoencoders to change ages in face 
images. According to Choi et al., [24] StarGAN makes it possible to change facial features from one domain to 
another. Progressive Growing GANs for high-resolution images are introduced by Karras et al. [2], while Wu 
et al. [31] introduce a PP-GAN model to solve de-identification privacy concerns. Even so, GANs confront 
problems like showing a wide range of images, handling attacks and making their choices transparent for 
people without expertise. Many advanced GAN models, including BigGAN, PG-GAN, StyleGAN and StyleGAN, 
have been built to make face images that appear real and show a wide range of characteristics. GAN inversion 
tools are now being used to connect real faces to their AI versions, making the images look even better. 
StyleGANs offer mixture of styles and improved image quality and the Alias-Free GAN [32] works on solving 
texture sticking and improving both Pseudonym Free GAN and StyleGAN blending.  
 
PALMPRINT 
Palmprint recognition, a biometric technique based on unique patterns in palm skin, has become a reliable 
method due to its stability and uniqueness. The use of Generative Artificial Neural Networks (GANs) has 
increased its popularity due to their ability to generate realistic and varied synthetic data. Previous studies have 
used DCGANs [27] to create realistic palm images, using the PolyU Palmprint Database. Wang et al.'s 
method,[43] however, required a large number of images, making it time-consuming.  
 

Table 2: Various GAN models applied on Biometric Traits 
Biometric Feature Model Used Year 

Face Conditional Adversarial Autoencoder [29] 2017 

Face StarGAN [24] 2018 

Face PROGAN [2] 2018 

Face Privacy Protective GAN [31] 2019 

Face Alias-free GAN [32] 2021 

Fingerprint WGAN [33] 2018 

Fingerprint Lightweight GAN [34] 2020 

Fingerprint PatchGAN [35] 2020 

Fingerprint Cycle GAN [36] 2019 

Fingerprint CGAN+Stack GAN [37] 2021 

Fingerprint DSBGAN [38] 2022 

Iris 4D Cycle GAN [39] 2018 

Iris IrisGAN [25] 2018 

Iris SRGAN [40] 2020 

Iris GAN [41] 2023 

Iris Conditional Style Gan [42] 2023 

Palmprint DCGAN [27] 2020 

Palmprint DCGAN [42] 2020 

 
5. DISCUSSION 

 
Biometric identification systems are safe and reliable, but they can be attacked through direct or indirect 
attacks. Certain methods, such as face, iris, fingerprint, palmprint, ECG, and voice recognition, are vulnerable 
to attacks. Artificial intelligence (AI) can produce deepfakes that can be easily fooled by human sight. 
Countermeasures have been proposed to guard against gathered or fraudulent data entering biometric 
recognition systems. 
Multimodal biometric systems improve user authentication accuracy, security, and dependability by fusing 
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several biometric features. Implementing multimodal biometric authentication systems requires careful 
consideration of the right combination of biometric modalities, determining the number of traits to use, 
utilizing a fusion framework, effective recognition algorithms, device accuracy and reliability, real-time 
application-specific systems, and data acquisition tools. User acceptability is also crucial for successful 
implementation. StyleGAN is a realistic image generator used for training facial recognition systems, 
generating high-quality facial images and improving various facial aspects. However, it faces mode collapse 
problems. CycleGAN is used for age-progressed photos and rejuvenated facial biometric data, converting facial 
traits across age groups to create comprehensive datasets. BigGAN is a large-scale high-fidelity picture 
synthesis tool that can improve biometric identification systems training. StarGAN is a multidomain model 
that can produce multimodal biometric data like fingerprints, iris patterns, and facial features simultaneously. 
PRO-GAN's progressive training method can produce high-resolution biometric pictures by building 
complexity from lesser resolutions. However, scaling up may present challenges due to GPU resource 
limitations. Overall, these tools offer various solutions for training biometric systems, but they all have their 
limitations and limitations. 
 

6. CONCLUSION 
 
The paper discusses the advancements in Generalized Autonomous Networks (GANs). GANs, operating on the 
minimax game concept, have significantly advanced image processing and extended their influence to 
biometrics. The paper emphasizes the importance of understanding GANs' strengths and weaknesses, 
addressing challenges like gradient disappearance and mode collapse. To optimize GANs for various 
applications, the paper suggests exploring new objective functions and enhancing traditional network 
structures. The research suggests the need for a Universal GAN that works with all biometric datasets and 
features, facilitating the creation of multi-modal systems and facilitating cross-modal integration. This GAN 
can optimize computational resources, protect privacy, enhance adversarial robustness, and streamline 
research and development. It can also enhance the security of synthetic biometric data by providing protection 
against potential manipulations. It is seen that not much work is done on palmprint synthesis and restoration, 
further investigation will focus on the use of GANs in palmprint recognition, its challenges, achievements, and 
potential directions for improving precision, resilience and restoration 
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