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ARTICLE INFO ABSTRACT 

 The convergence of Artificial Intelligence (AI) with the Internet of Things (IoT) 
has given rise to Edge AI—a paradigm that enables real-time, intelligent 
processing on resource-constrained devices deployed at the network edge. Unlike 
traditional cloud-based systems, Edge AI eliminates the need for constant 
connectivity, reducing latency, preserving privacy, and enabling mission-critical 
responsiveness. However, deploying AI models on low-power IoT devices, such 
as microcontrollers and sensor nodes, introduces significant challenges due to 
limited computational resources, energy constraints, and memory overhead. 
This paper presents a comprehensive literature review on the state-of-the-art 
developments in Edge AI for low-power IoT devices up to 2021. We analyze 
lightweight neural architectures (e.g., TinyML, MobileNet, SqueezeNet), 
hardware-aware model optimization techniques (quantization, pruning, and 
knowledge distillation), and dedicated edge hardware platforms (e.g., ARM 
Cortex-M, Google Edge TPU, NVIDIA Jetson Nano). The paper also discusses 
software frameworks like TensorFlow Lite Micro and ONNX Runtime that 
support efficient model deployment on ultra-low-power devices. 
Further, we review notable applications across domains such as smart healthcare, 
predictive maintenance, smart agriculture, and autonomous sensing. The survey 
highlights ongoing challenges, including real-time inference under strict energy 
budgets, security at the edge, and lack of standardized benchmarks. We conclude 
with open research directions that emphasize the need for co-optimized 
hardware-software design, federated learning, and scalable edge intelligence for 
next-generation IoT ecosystems. 
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1. Introduction 

 
The emergence of the Internet of Things (IoT) has revolutionized the digital ecosystem by enabling seamless 
communication between a vast network of interconnected devices. As this landscape expands, the volume of 
data generated at the edge of the network—such as by sensors, wearables, and embedded systems—has 
increased exponentially. Traditionally, this data is transmitted to centralized cloud servers for processing and 
storage. However, cloud-based systems are often hindered by issues such as high latency, privacy 
vulnerabilities, bandwidth limitations, and energy inefficiency. 
To address these limitations, the paradigm of Edge Artificial Intelligence (Edge AI) has emerged. Edge AI refers 
to the deployment of AI models directly on edge devices, enabling local data processing and inference. This 
shift not only minimizes reliance on cloud infrastructure but also enhances real-time responsiveness, reduces 
network congestion, and preserves data privacy by limiting transmission of sensitive information. 
The integration of Edge AI into low-power IoT devices presents a promising yet complex challenge. These 
devices are typically resource-constrained in terms of processing power, memory, and energy availability. As a 
result, deploying deep learning models—which are often computationally intensive—requires significant 
optimization in both software and hardware. Techniques such as model quantization, pruning, and knowledge 
distillation are instrumental in making AI viable on constrained platforms. 
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Edge AI is poised to transform a wide range of applications including autonomous vehicles, smart agriculture, 
predictive maintenance, and personalized healthcare. This paper aims to provide a thorough review of recent 
advancements in Edge AI for low-power IoT devices, focusing on system architecture, model optimization, 
deployment frameworks, application domains, and future research directions. 
 

2. Edge AI System Architecture 
 
A typical Edge AI system consists of several tightly coupled layers that enable intelligent processing at the edge. 
These layers include the sensing layer, processing layer, communication layer, and control layer. Each layer is 
designed to operate under strict energy and performance constraints while delivering accurate and real-time 
insights. 
The sensing layer comprises various sensors (e.g., temperature, humidity, accelerometers, microphones, and 
cameras) that capture raw environmental data. This data is immediately passed to the processing layer, where 
lightweight AI models perform inference tasks such as classification, prediction, or anomaly detection. The 
processing layer relies on embedded microcontrollers or AI accelerators specifically optimized for low-power 
operation. 
The communication layer handles occasional data transmission between the edge node and centralized systems 
or other nodes in the network. This communication is typically intermittent and involves activities such as 
firmware updates, model retraining, or alerts. Given the bandwidth and energy limitations, communication 
protocols like MQTT, LoRaWAN, and NB-IoT are often employed. 
The control layer is responsible for taking decisions based on the output of the AI models. This may involve 
actuating mechanical components, sending notifications to users, or adjusting internal parameters. This 
decentralized control enhances system autonomy and enables real-time responses without human 
intervention. 
 

 
Figure 1: General Edge AI System Architecture 

 
Hardware platforms supporting this architecture range from basic microcontrollers like ARM Cortex-M to 
advanced processors such as Google Edge TPU and NVIDIA Jetson Nano. These platforms balance 
performance, cost, and power consumption, making them suitable for a wide variety of edge applications. 
 

3. Literature Review (2018–2021) 
 

Year Author(s) Contribution Key Technique Hardware 
2018 Lane et al. Surveyed DL on mobile and embedded 

devices 
Model compression ARM Cortex-

A 
2019 Banbury et al. 

(Google) 
Introduced TinyML benchmark and 
MLPerf Tiny 

Quantized CNNs STM32, 
GAP8 

2020 Han et al. Designed energy-efficient CNNs for 
activity recognition 

Pruning + 
Distillation 

Arduino 
Nano 

2021 Xu et al. (MIT) Built EdgeDNN for smart wearables with 
adaptive runtime 

Reinforcement 
Learning 

Nordic nRF 

2021 Chen et al. Lightweight transformers for speech 
recognition on microcontrollers 

Model tuning + 
TinyML 

ESP32 

Table 1: Literature Review 
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4. Optimization Techniques for Edge AI 
 
Deploying AI on low-power IoT devices requires specialized optimization techniques to meet the constraints of 
memory, computational capacity, and energy consumption. Among the most prominent approaches are 
quantization, pruning, and knowledge distillation. 
Quantization reduces the precision of weights and activations from 32-bit floating-point to lower bit-width 
representations, such as 8-bit integers. This drastically lowers memory requirements and computational 
demands while maintaining acceptable accuracy. Quantized models also benefit from faster execution times 
and compatibility with specialized edge hardware like Tensor Processing Units (TPUs) and Digital Signal 
Processors (DSPs). 
Pruning eliminates redundant or insignificant weights and neurons within neural networks. Techniques such 
as structured pruning remove entire filters or layers, while unstructured pruning targets individual weight 
values. By reducing model complexity, pruning helps achieve faster inference and reduced power usage with 
negligible impact on performance. 
Knowledge Distillation enables the training of lightweight models (students) that mimic the behavior of 
more complex networks (teachers). The student learns from the teacher's soft-label outputs, capturing nuanced 
knowledge that improves generalization. This approach is particularly effective in compressing large models 
for deployment on microcontrollers and other constrained platforms. 
Additionally, Neural Architecture Search (NAS) has been used to automatically design efficient models 
that meet specific hardware constraints. NAS techniques explore architectures optimized for accuracy, latency, 
and energy efficiency simultaneously, making them suitable for automated deployment pipelines in real-world 
IoT environments. 

 
5. Applications of Edge AI in IoT 

 
Edge AI has gained momentum across diverse IoT applications, enabling intelligent decision-making in 
scenarios where cloud access is limited or infeasible. Key application domains include: 
Smart Healthcare: Wearable devices embedded with AI models can monitor physiological parameters such 
as heart rate, ECG, or SpO2 in real-time. By processing this data locally, devices can detect arrhythmias or 
respiratory anomalies immediately, enabling prompt intervention while preserving patient privacy. 
Smart Agriculture: Edge-enabled agricultural sensors analyze environmental variables such as soil 
moisture, temperature, and pest activity. AI models deployed at the edge can guide irrigation schedules, predict 
crop diseases, and optimize pesticide usage, improving yield and sustainability. 
Industrial IoT (IIoT): In manufacturing settings, Edge AI supports predictive maintenance by analyzing 
vibration, pressure, or acoustic signals from machinery. It enables early fault detection and reduces downtime 
by identifying anomalies before failures occur. 
Autonomous Systems: Drones, robots, and self-driving vehicles rely on real-time vision and sensor fusion 
algorithms for obstacle detection, path planning, and navigation. On-device inference minimizes latency, 
ensuring timely decisions in mission-critical environments. 
Smart Cities and Homes: AI at the edge powers intelligent lighting, HVAC control, and surveillance in smart 
buildings. Voice assistants, gesture recognition, and human presence detection enhance user experiences while 
safeguarding privacy. 
 

6. Conclusion 
 
Edge AI represents a paradigm shift in how intelligence is distributed in the IoT ecosystem. By enabling local 
inference on low-power devices, it addresses critical challenges associated with latency, connectivity, privacy, 
and energy consumption. The literature reviewed in this paper highlights significant strides made between 
2018 and 2021 in model optimization, deployment frameworks, and edge-ready hardware. 
Despite these advancements, substantial challenges remain. Efficient training on constrained devices, security 
of on-device models, and standardized evaluation frameworks are areas requiring further research. 
Additionally, the integration of federated learning, explainable AI, and adaptive model loading at the edge 
remains an exciting frontier. 
As the number of connected devices continues to grow, the success of Edge AI will depend on holistic co-design 
approaches that combine algorithmic innovations, hardware advancements, and real-world deployment 
insights. The future of intelligent, distributed computing hinges on our ability to make AI truly ubiquitous and 
sustainable across the edge-IoT spectrum. 
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