

Design Of An Iterative Method For Optimizing Agricultural Productivity And Crop Quality Using Graph-**Based Q-Learning And Nutrient-Action Frameworks**

Snehal W. Wasankar^{1*}, Dr. P. M. Jawandhiya²

^{1*}Sipna COET, Amravati ²PLIT, Buldhana

Citation: Snehal W. Wasankar, et al. (2024), Design Of An Iterative Method For Optimizing Agricultural Productivity And Crop Quality Using Graph-Based Q-Learning And Nutrient-Action Frameworks, Educational Administration: Theory and Practice, 30(4), 2798-2804, Doi: 10.53555/kuey.v30i4.1944

ARTICLE INFO	ABSTRACT
	Agricultural sustainability and productivity are paramount for feeding the ever-
	growing global population under fluctuating environmental conditions &
	scenarios. Traditional fertilization and crop management strategies often fall
	short in optimizing nutrient usage and enhancing crop quality due to their
	generalized nature and inability to adapt to local environmental changes.
Current methodologies lack precision in addressing the intricate dep	
	between various nutrients and environmental factors affecting crop growth and
	quality. In response to these limitations, this study introduces a novel approach
	utilizing graph-based Q-learning, applied in two distinct but complementary
	domains: Nutrient Level Evaluation and Fertilizer Recommendation, and Crop
	Quality Prediction and Improvement Scenarios. The core of our methodology lies
	in the construction of Nutrient-Action and Quality-Action Graphs, where nodes
	represent the quantifiable levels of soil nutrients or crop quality parameters, and
	edges symbolize actionable measures such as specific fertilizer applications or
	farming practices adjustments. Our proposed models leverage the flexibility and
	learning capability of Q-learning, a form of reinforcement learning, to navigate
	the constructed graphs efficiently. This enables the algorithm to discern optimal
	strategies by iteratively learning from the environment and updating policies
	based on the observed outcomes, thus accommodating the dynamic nature of
	agricultural systems. The nutrient-action graph model focuses on optimizing the
	amount of each critical nutrient (e.g., nitrogen, phosphorus, potassium) tailored to the specific crop and soil types, considering environmental factors like
	temperature and humidity. Simultaneously, the quality-action graph model
	predicts and improves crop quality by recommending adjustments in farming
	practices based on historical data, environmental conditions, and existing
	agricultural practices. The integration of these models into the agricultural
	decision-making process represents a significant advancement over traditional
	methods. Preliminary results suggest that our approach could lead to a 10-20%
	increase in crop yield and quality, outperforming conventional fertilization
	techniques. Furthermore, our crop quality improvement strategies, informed by
	predictive analytics, indicate potential enhancements in crop nutritional content
	and disease resistance by 5-15%, contingent upon the agricultural context and
	interventions employed in real-time scenarios. This work impacts the
	agricultural sector by providing a scalable, data-driven framework for
	personalized crop management and fertilization strategies. By harnessing the
	power of Q-learning and graph-based representations, we offer a sophisticated
	tool for enhancing food security, minimizing environmental impacts, and
	promoting sustainable farming practices worldwide.
	Keywords: Graph-Based Q-Learning, Nutrient-Action Framework, Crop

Quality Improvement, Agricultural Productivity, Reinforcement Learning

Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The global agricultural landscape faces unprecedented challenges, including increasing population pressures, climate change, and the imperative for sustainable farming practices. These challenges necessitate a paradigm shift in how crop management and fertilization strategies are devised and implemented. Traditional agricultural methods often adopt a one-size-fits-all approach, lacking the precision required to cater to the unique needs of different crops, soil types, and environmental conditions. This generalized approach not only results in suboptimal crop yields and quality but also contributes to significant environmental issues, such as soil degradation and nutrient runoff. There is, therefore, a critical need for innovative methodologies that enable more personalized, efficient, and environmentally friendly agricultural practices.

Recent advancements in artificial intelligence (AI) and machine learning (ML) offer promising solutions to these complex problems. Specifically, reinforcement learning (RL), a branch of ML concerned with how agents take actions in an environment to maximize some notion of cumulative reward, has shown great potential in addressing the dynamic and complex nature of agricultural environments. Graph-based Q-learning, an adaptation of the traditional Q-learning algorithm, stands out for its ability to model complex systems through nodes and edges representing states and actions, respectively. This method is particularly suited for agricultural applications where the interdependencies between various factors—such as soil nutrients and environmental conditions—are intricate and multi-dimensional.

In this paper, we introduce a novel approach that harnesses graph-based Q-learning for agricultural decisionmaking. Our methodology consists of two main components: the Nutrient-Action Framework and the Quality- Action Framework. The Nutrient-Action Framework is designed to optimize soil nutrient levels for various crops by considering specific crop and soil types, alongside prevailing environmental conditions. This approach enables the dynamic adjustment of fertilizer types and quantities, ensuring that crops receive the most appropriate nutrients in the right amounts, thereby reducing waste and environmental impact. On the other hand, the Quality-Action Framework focuses on improving crop quality metrics such as yield, nutritional content, and disease resistance by analyzing historical crop data, environmental variables, and farming practices. By applying graph-based Q-learning, this framework identifies and recommends the most effective adjustments to farming practices, leading to improved crop quality and sustainability.

The integration of these frameworks provides a holistic approach to agricultural management, addressing both the nutritional needs of crops and the overarching quality objectives. This paper details the design and implementation of these frameworks, demonstrating their potential through preliminary results that indicate significant improvements in crop yield and quality. The adoption of such data-driven, AI-powered methodologies represents a significant leap forward for the agricultural sector, promising not only higher productivity and better-quality crops but also enhanced environmental sustainability.

Motivation & Contribution

The motivation behind this research originates from the pressing need to address the multifaceted challenges faced by the global agricultural sector. With the global population projected to reach nearly 10 billion by 2050, there is an urgent requirement to enhance food production without exacerbating environmental issues. Traditional agricultural practices, while foundational, often fall short in efficiency and sustainability, leading to excessive use of fertilizers, inefficient water usage, and ultimately, the degradation of soil quality. Furthermore, these practices do not account for the variable nature of environmental conditions, soil types, and crop needs, resulting in generalized solutions that are far from optimal.

The advent of precision agriculture, powered by advancements in artificial intelligence and machine learning, presents an unprecedented opportunity to revolutionize farming practices. However, the implementation of these technologies in agriculture is still in its nascent stages, with many existing solutions failing to fully exploit the complex interrelations among the various factors influencing crop growth and health. Therein lies the primary motivation for this work: to develop a sophisticated, yet practical, framework that leverages the power of graph-based Q-learning to tailor agricultural practices to the unique requirements of each farm.

The contributions of this paper are manifold and significant in advancing the field of precision agriculture. Firstly, the development of the Nutrient-Action Framework represents a novel application of graph-based Qlearning in optimizing soil nutrient levels tailored to specific crops and environmental conditions. This framework moves beyond traditional fertilization methods by creating a dynamic, self-learning system capable of adjusting recommendations in real-time based on changing environmental factors and crop needs.

Secondly, the Quality-Action Framework introduces an innovative approach to improving crop quality through data-driven adjustments to farming practices. By incorporating historical data, current

environmental conditions, and proven agricultural practices, this framework provides actionable insights that are specifically tailored to enhance crop yield, nutritional content, and resistance to diseases.

Together, these frameworks constitute a comprehensive solution to the pressing challenges of modern agriculture. They not only offer a path toward significantly higher productivity and sustainability but also exemplify the practical application of advanced machine learning techniques in addressing real-world issues for real-time scenarios. By detailing the methodology, implementation, and preliminary results of these frameworks, this paper contributes to the growing body of knowledge in precision agriculture and demonstrates the potential of AI and ML to transform the agricultural landscape for the better.

2. Review of Existing Models used for Nutrition Analysis

The continuous evolution of precision agriculture necessitates a systematic review of recent technological advancements aimed at enhancing crop monitoring, disease management, and yield estimation. This review meticulously examines twenty-five recent studies, each contributing unique methodologies and findings to the realm of agricultural technology. The methodologies range from Internet of Things (IoT) and computer vision to machine learning and remote sensing, addressing various agricultural challenges such as disease monitoring, weed management, and crop yield prediction.

The review's primary focus is to identify, categorize, and evaluate the effectiveness, scalability, and practical implications of each method. It seeks to discern patterns, compare efficacy, and highlight innovative approaches within the context of precision agriculture. By synthesizing the findings from these studies, this pre-writeup aims to establish a comprehensive understanding of the current state of agricultural technology and identify areas where further research and development are necessary.

Reference	Method Used	Findings	Results	Limitations
[1]	Ensemble classification and IoT-	Utilized ensemble support vector	Achieved effective	Dependency on IoT
L-3	based pattern recognition for	machine (SVM) and Internet of	disease	infrastructure, potential
	crop disease monitoring system	Things (IoT) for crop and leaf	classification with	challenges in real-world
		disease monitoring	ensemble SVM	implementation
[2]	Computer vision and deep	Applied segmentation and deep	Enhanced	Reliance on sufficient and
	learning for wheat stripe rust	learning for wheat striperust	classification	accurate training data,
	disease classification	disease classification	accuracy through	computational complexity
			segmentation	r r i i i i i i i i i i i i i i i i i i
[3]	Decision support system for	Developed an agriprecision	Improved decision	May require fine-tuning for
201	weed management in pastures	decision support system	making and weed	different weed species and
	0 1	integrating fuzzy neural networks	detection efficiency	environmental conditions,
		and object detection for		initial setup and calibration
		pasture weed management		overhead
[4]	Siamese quadratic Swin	Utilized SQ-Swin, a transformer-	Achieved accurate	Potential complexity in mode
	Transformer for lettuce	based siamese model, for lettuce	prediction of lettuce	training and deployment,
	browning prediction	browning prediction	browning, especially	limited to lettuce browning
			beneficial	prediction without broader
				applications
[5]	Wearable flower- shaped	Developed a wearable sensor	Enabled real-time	May face challenges in
	sensor for		monitoring of plant	scalability and
	in-vivo plant growth monitoring	based on fiber Bragg grating	Growth with high	robustness for large- scale
		technology for in-vivo plant	sensitivity	deployment, dependency on
		growth monitoring		sensor calibration and
				maintenance
[6]	Optical sensor system for early	Designed an optical sensor	Provided effective	Sensitivity to environmental
	warning of organic matter	system utilizing fluorescence for	in-situ monitoring	factors, potential interference
	breach in irrigation systems	early warning of organic matter	and early warning	from ambient light and wate
		breach in large- scale irrigation	capabilities	quality variations
		systems		
[7]	De-embedding line- line method	Developed a novel de-	Enabled accurate	May require expertise in
	for broadband soil permittivity	embedding method for	and calibration-free	transmission line
	measurements	Broadband soil permittivity	soil permittivity	measurements and
		measurements	measurements	calibration, limited to soil
				permittivity measurements
[8]	C-band telemetry of insect	Implemented C-band telemetry	Achieved accurate	Limited to C-band telemetry
	pollinators using a miniature	with miniature transmitters and	localization of insect	and may not cover all insect
	transmitter and self-piloted	self-piloted drones for insect	pollinators using	species or behaviors, potentia
	drone	pollinator localization	telemetry	limitations in drone flight
				endurance and range
[9]	Coaxial-line measurements for	Proposed a simple calibration	Provided a	Dependency on accurate
	permittivity extraction of soil	method for coaxial-line	straight forward	calibration standards and
	samples	measurements to extract soil	approach for soil	equipment, limited to
		permittivity	permittivity	laboratory or controlled field
			extraction	settings
[10]	Microwave method for honey-	Introduced a self-calibrating	Enabled accurate	May require
	water content analysis	microwave technique for honey-	and self-calibrating	Optimization for different type

	Using mixing models	water content analysis using binary mixing models	analysis of honey- water content	of honey and water, potentia sensitivity to environmental factors
[11]	Cold plasma- induced effects on bioactive constituents and antioxidant potential of lotus petals	Investigated the effects of cold plasma treatment on bioactive constituents and antioxidant potential of lotus petal powder	Highlighted potential for enhancing bioactive constituents and antioxidant potential though cold plasma treatment	Limited to lotus petal powde scalability and practicality ir industrial applications may need further investigation
[12]	Fuzzy-based smart farming and consumed energy	Developed a fuzzy logic-based smart farming system and compared energy	Demonstrated improved farming efficiency with fuzzy	Dependency on IoT infrastructure and Sensor accuracy, potential challenges in
	Comparison using IoT	Consumption using IoT	logic-based automation	fuzzy rule formulation and tuning
[13]	Plasma-activated water effects via different gas Treatments on coffee ground decomposition	Investigated the effects of plasma- activated water via different gas treatments on coffee ground decomposition	Identified potential for plasma-activated water in organic compound decomposition and agriculture	Limited to laboratory- scale experiments, potential variability in plasmatreatmer effects
[14]	Functionalized graphene transistors for ultrasensitive bacteria sensors	Developed ultrasensitive bacteria sensors based on functionalized graphene transistors	Achieved high Sensitivity and Selectivity for bacteria detection	Potential challenges in sense fabrication and functionalization, limited to laboratory- scale application
[15]	Faster R-CNN integrated with CBAM for mature bud detection in daylilies	Integrated Faster R- CNN with CBAM for mature bud Detection in daylilies	Improved accuracy and efficiency in mature bud detection	Dependency on accurate labeling and training data, potential challenges in generalization to other flowering plants
[16]	DimLift: Interactive hierarchical data exploration through dimensional bundling	Developed DimLift, an interactive visual analysis tool for hierarchical data exploration through dimensional bundling	Enabled intuitive exploration and analysis of complex hierarchical datasets	Dependency on user interface design and usability testing potential scalability issues with large datasets
[17]	Gaussian kernel regression for crop yield estimation from combined optical and SAR imagery	Utilized Gaussian kernel regression for crop yield estimation from combined optical and SAR imagery	Improved accuracy of crop yield estimation through data fusion	Dependency on accurate and high- resolution imagery, potential challenges in fusio and calibration of different data sources
[18]	Machine learning approaches for crop yield prediction with emphasis on palm oil	Reviewed various machine learning approaches for crop yield prediction with a focus on palm oil	Provided insights into the application of machine learning in palm oil yield prediction	Dependency on sufficient an diverse training data, potent challenges in model generalization and scalabilit
[19]	Integration of remotely sensed drought monitoring index into yield estimate model for wheat	Integrated remotely sensed drought monitoring index into yield estimate model for improved wheat yield estimates	Enhanced accuracy of wheat yield estimates with drought monitoring index	Dependency on accurate an timely drought monitoring data, potential limitations in model transferability and robustness
[20]	Remote sensing and machine learning-	Applied remote Sensing and	Demonstrated potential for remote	Dependency on reliable remo sensing data
	Based crop yield prediction for Tackling food insecurity	machine learning for crop yield prediction to address food insecurity	Sensing and machine learning in food security initiatives	and machine learning mode potential challenges in scalability and accessibility
[21]	Assimilation of GLASS LAI into a crop growth model with ensemble Kalman filter	Assimilated GLASS LAI into a crop growth model with ensemble Kalman filter for improved winter wheat yield estimation	Enhanced accuracy and uncertainty estimation in winter wheat yield estimation	Dependency on accurate and timely LAI data, computation complexity and resource requirements for ensemble Kalman filtering
[22]	Mapping complex crop rotation systems in southern China considering seasonal dynamics	Mapped complex crop rotation systems in southern China considering cropping intensity, diversity, and seasonal dynamics	Provided valuable insights into land monitoring and agricultural practices in southern China	Dependency on accurate an up-to- date satellite imager potential limitations in dat availability and resolution
[23]	Interpretable LSTM networks for crop yield estimation	Developed interpretable LSTM networks for crop yield estimation	Improved interpretability and transparency in crop yield estimation	Dependency on accurate an diverse training data, potent challenges in model interpretation and explanati
[24]	Assimilation of Earth observation data for crop yield estimation in smallholder agricultural systems	Assimilated Earth observation data for crop yield estimation in smallholder agricultural systems	Provideda Framework for integrating Earth observation data into smallholder agricultural systems	Dependency on accurate and timely Earth observation dat potential challenges in mod calibration and validation

	and man dama famat fama fatan	- f	···· 4 ··· 4 ··· 4 ···
model and random forest for	and random forest for winter	of winter wheat yield	imagery and model
winter wheat yield estimation	wheat yield estimation from UAV	estimation with	parameterization, potential
from UAV hyperspectral	hyperspectral imagery	UAV hyperspectral	challenges in data
imagery		imagery	preprocessing and model
			training

Table 1. Review of Existing Methods

As per table 1, the review reveals a significant trend towards the integration of advanced technologies such as machine learning, deep learning, and IoT in addressing agricultural challenges. Notably, methods utilizing deep learning and computer vision, as seen in studies focused on disease classification and mature bud detection, demonstrate high accuracy and potential for real-time application. However, these approaches often require extensive data for training and are computationally intensive, highlighting a dependency on sufficient and accurate training data as a common limitation in different scenarios.

In contrast, IoT-based methods, exemplified by crop disease monitoring systems and smart farming solutions, offer real-time monitoring and decision-making capabilities. While these systems show promise in enhancing agricultural efficiency, they are heavily dependent on IoT infrastructure and sensor accuracy, which may pose challenges in real-world implementation and scalability.

Emerging technologies like plasma-activated water and wearable sensors for in-vivo plant monitoring introduce innovative approaches to agricultural problems. However, these methods are currently limited by scalability, robustness, and practicality in industrial applications.

Among the reviewed methodologies, machine learning and remote sensing-based approaches for crop yield prediction stand out for their ability to integrate diverse data sources and provide actionable insights. Specifically, the integration of remotely sensed data with machine learning models, as employed in crop yield prediction and drought monitoring, offers a balanced approach in terms of accuracy, scalability, and applicability. These methods are capable of handling large datasets and providing precise yield estimates, albeit with a reliance on accurate and timely data samples.

In conclusion, while no single method emerges as universally superior, the combination of machine learning with remote sensing and IoT appears to offer the most promising avenue for addressing the multifaceted challenges of precision agriculture. Future research should focus on overcoming the identified limitations, particularly in data dependency, computational complexity, and real-world applicability, to further enhance the scalability and effectiveness of these technologies in global agricultural practices.

References

- G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand and A. H. Gandomi, "Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System," in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12847-12854, 15 Aug.15, 2021, doi: 10.1109/JIOT.2021.3072908. keywords: {Internet of Things; Agriculture; Support vector machines; Diseases;6G mobile communication; Agriculture; crop and leaf diseases; ensemble support vector machine (SVM);Internet of Things (IoT)},
- 2. H. R. Bukhari et al., "Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning," in IEEE Access, vol. 9, pp. 164986-165004, 2021, doi: 10.1109/ACCESS.2021.3134196.
- 3. keywords: {Image segmentation; Diseases; Crops; Deep learning; Biological system modeling; Production; Image color analysis; Machine learning; deep learning; segmentation; cropping; classification; wheat stripe rust disease},
- 4. H. Chegini, R. Naha, A. Mahanti, M. Gong and K. Passi, "An Agriprecision Decision Support System for Weed Management in Pastures," in IEEE Access, vol. 11, pp. 92660-92675, 2023, doi: 10.1109/ACCESS.2023.3307311.
- 5. keywords: {Crops; Decision support systems; Deep learning; Monitoring; Spraying; Data models; Task analysis; Fuzzy systems; Object detection; Farming; Fuzzy systems; object detection; pasture management; decision making; decision support systems; fuzzy neural networks},
- 6. D. Wang, B. Zhang, Y. Xu, Y. Luo and H. Yu, "SQ-Swin: Siamese Quadratic Swin Transformer for Lettuce Browning Prediction," in IEEE Access, vol. 11, pp. 128724-128735, 2023, doi: 10.1109/ACCESS.2023.3332488.
- 7. keywords: {Transformers; Neurons; Task analysis; Feature extraction; Computational modeling; Training; Visualization; Crops; Agricultural products; Predictive models; Product delivery; Lettuce; enzymatic browning; transformer; quadratic; siamese model; reptile},
- 8. D. Lo Presti et al., "A Wearable Flower-Shaped Sensor Based on Fiber Bragg Grating Technology for In-Vivo Plant Growth Monitoring," in IEEE Sensors Journal, vol. 23, no. 8, pp. 8416-8425, 15 April15, 2023, doi: 10.1109/JSEN.2023.3253782.
- 9. keywords: {Climate change; Wearable sensors; Bragg gratings; Plants; Monitoring; Fiber Bragg gratings

(FBGs); multi-point measurements; plant monitoring; stretchable strain sensors; wearable sensors},

- 10. S. Sinitsa et al., "Optical Sensor System for Early Warning of Inflow Organic Matter Breach in Large-Scale Irrigation Systems and Water Treatment Systems," in IEEE Sensors Journal, vol. 22, no. 2, pp. 1680-1691, 15 Jan.15, 2022, doi: 10.1109/JSEN.2021.3132019.
- 11. keywords: {Water resources; Irrigation; Temperature measurement; Sensors; Fluorescence; Monitoring; Water conservation; Fecal contamination; fluorescence sensor; in situ monitoring; spectrometer; water quality},
- 12. H. Hasar et al., "Broadband Soil Permittivity Measurements Using a Novel De-Embedding Line–Line Method," in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 5002605, doi: 10.1109/LGRS.2021.3140097.
- 13. keywords: {Transmission line measurements; Soil; Soil measurements; Transmission line matrix methods; Calibration; Power transmission lines; Permittivity measurement; Calibration-free; complex permittivity; de-embedding method; soil},
- 14. J. Shearwood et al., "C-Band Telemetry of Insect Pollinators Using a Miniature Transmitter and a Self-Piloted Drone," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 938-946, Jan. 2021, doi: 10.1109/TMTT.2020.3034323.
- 15. keywords: {Drones; Receivers; Insects; Phased arrays; Phase shifters; Antenna measurements; Substrates; Energy harvesting; localization; phased arrays; received signal strength indicator (RSSI); telemetry; unmanned vehicle},
- H. Hasar et al., "Permittivity Extraction of Soil Samples Using Coaxial-Line Measurements by a Simple Calibration," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-8, 2023, Art no. 5300108, doi: 10.1109/TGRS.2022.3233912.

keywords: {Transmission line measurements; Soil measurements; Soil; Calibration; Permittivity measurement; Moisture; Position measurement; Calibration curve; frequency-domain;permittivity;simple calibration; soil; volumetric moisture content},

- 1. H. Hasar et al., "Honey–Water Content Analysis by Mixing Models Using a Self-Calibrating Microwave Method," in IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 2, pp. 691-697, Feb. 2023, doi: 10.1109/TMTT.2022.3208024.
- 2. keywords: {Permittivity measurement; Microwave measurement; Electromagnetic waveguides; Microwave theory and techniques; Liquids; Calibration; Time measurement; Adulteration; binary mixing models; honey; microwave techniques; self-calibration; water content analysis},
- 3. R. Dakshayani, A. Paul and R. Mahendran, "Cold Plasma-Induced Effects on Bioactive Constituents and Antioxidant Potential of Lotus Petal Powder," in IEEE Transactions on Plasma Science, vol. 49, no. 2, pp. 507-512, Feb. 2021, doi: 10.1109/TPS.2020.2995918.
- 4. keywords: {Plasmas; Powders; Electrodes; Standards; Surface treatment; Surface discharges; Surface morphology; Antioxidants (AOs); bioactive constituents; cold plasma (CP); lotus; phenolics and flavonoids},
- 5. Waluyo, A. Widura, F. Hadiatna and D. Anugerah, "Fuzzy-Based Smart Farming and Consumed Energy Comparison Using the Internet of Things," in IEEE Access, vol. 11, pp. 69241-69251, 2023, doi: 10.1109/ACCESS.2023.3291616.
- 6. keywords: {Sensors; Light emitting diodes; Microcontrollers; Intelligent sensors; Fuzzy logic; Smart agriculture; Hydroponics; Energy; fuzzy; hydroponics; illuminance; sensor},
- 7. Y. -C. Chan, Y. -T. Lai, S. -Y. Hsu, P. -Y. Chen and J. -G. Duh, "Effects of Plasma-Activated Water via Different Gas Treatments on Coffee Ground Decomposition," in IEEE Transactions on Plasma Science, vol. 51, no. 8, pp. 2282-2289, Aug. 2023, doi: 10.1109/TPS.2023.3292928.
- 8. keywords: {Plasmas; Nitrogen; Argon; Picture archiving and communication systems; Conductivity; Amino acids; Ions; Agriculture; atmospheric pressure plasma; organic compounds; plasma applications; plasma- activated water (PAW)},
- 9. X. Tan et al., "Ultrasensitive and Selective Bacteria Sensors Based on Functionalized Graphene Transistors," in IEEE Sensors Journal, vol. 22, no. 6, pp. 5514-5520, 15 March15, 2022, doi: 10.1109/JSEN.2022.3147229.
- 10. keywords: {Microorganisms; Graphene; Sensors; Biosensors; Surface treatment; Semiconductor device measurement; Electric potential; Graphene field-effect transistors; biosensors; bacteria monitoring; E coli bacteria},
- J. Feng, X. Zhao, T. Zhu, T. Li, Z. Qiu and Z. Li, "Detection Mature Bud for Daylily Based on Faster R-CNN Integrated With CBAM," in IEEE Access, vol. 11, pp. 81646-81655, 2023, doi: 10.1109/ACCESS.2023.3299595.
- 12. keywords: {Feature extraction; Residual neural networks; Object detection; Detectors; Convolutional neural networks; Robots; Flowering plants; Food technology; Daylily; faster R-CNN; detection; attention mechanism; CBAM},
- 13. L. Garrison, J. Müller, S. Schreiber, S. Oeltze-Jafra, H. Hauser and S. Bruckner, "Dim Lift: Interactive Hierarchical Data Exploration Through Dimensional Bundling," in IEEE Transactions on Visualization

and Computer Graphics, vol. 27, no. 6, pp. 2908-2922, 1 June 2021, doi: 10.1109/TVCG.2021.3057519.

- 14. keywords: {Visualization; Dimensionality reduction; Data visualization; Principal component analysis; Correlation; Tools; Neurology; Dimensionality reduction; interactive visual analysis; visual analytics; parallel coordinates},
- 15. Y. Alebele et al., "Estimation of Crop Yield From Combined Optical and SAR Imagery Using Gaussian Kernel Regression," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10520-10534, 2021, doi: 10.1109/JSTARS.2021.3118707.
- 16. keywords: {Optical interferometry; Crops; Optical imaging; Optical sensors; Vegetation mapping; Optical saturation; Coherence; Gaussian regression; kernels; optical vegetation indices (VIs); SAR interferometric coherence; Sentinel-1;Sentinel-2;yield},
- 17. M. Rashid, B. S. Bari, Y. Yusup, M. A. Kamaruddin and N. Khan, "A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction," in IEEE Access, vol. 9, pp. 63406-63439, 2021, doi: 10.1109/ACCESS.2021.3075159.
- 18. keywords: {Agriculture; Indexes; Oils; Vegetation mapping; Machine learning; Machine learning algorithms; Regression tree analysis; Artificial intelligence; crop yield prediction; deep learning; machine learning; palm oil yield},
- 19. D. Han et al., "Improving Wheat Yield Estimates by Integrating a Remotely Sensed Drought Monitoring Index into the Simple Algorithm for Yield Estimate Model," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10383-10394, 2021, doi: 10.1109/JSTARS.2021.3119398.
- 20. keywords: {Crops; Remote sensing; Data models; Yield estimation; Indexes; Monitoring; Stress; Simple algorithm for yield estimate (SAFY) model; vegetation temperature condition index (VTCI); winter wheat; yield estimation},
- 21. U. Shafi et al., "Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction," in IEEE Access, vol. 11, pp. 108640-108657, 2023, doi: 10.1109/ACCESS.2023.3321020.

keywords: {Crops; Vegetation mapping; Predictive models; Indexes; Machine learning; Autonomous aerial vehicles; Support vector machines; Regression; wheat yield; remote sensing; machine learning; food security; unmanned aerial vehicle (UAV);vegetation indices (VI's)},

- H. Huang et al., "The Improved Winter Wheat Yield Estimation by Assimilating GLASS LAI Into a Crop Growth Model With the Proposed Bayesian Posterior-Based Ensemble Kalman Filter," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-18, 2023, Art no. 4401818, doi: 10.1109/TGRS.2023.3259742. keywords: {Data models; Crops; Uncertainty; Data assimilation; Remote sensing; Yield estimation; Calibration; Crop growth model; data assimilation; ensemble Kalman filter (EnKF); Markov chain Monte Carlo (MCMC); yield simulation},
- 2. Y. Liu, Q. Yu, Q. Zhou, C. Wang, S. D. Bellingrath-Kimura and W. Wu, "Mapping the Complex Crop Rotation Systems in Southern China Considering Cropping Intensity, Crop Diversity, and Their Seasonal Dynamics," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 9584-9598, 2022, doi: 10.1109/JSTARS.2022.3218881.
- keywords: {Crops; Remote sensing; Earth; Soil; Random forests; Diversity reception; Artificial satellites; Crop diversity; crop rotation; cropping intensity; google earth engine (GEE);land monitoring;sentinel-1/2},
- 4. A. Mateo-Sanchis, J. E. Adsuara, M. Piles, J. Munoz-Marí, A. Perez-Suay and G. Camps-Valls, "Interpretable Long Short-Term Memory Networks for Crop Yield Estimation," in IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023, Art no. 2501105, doi: 10.1109/LGRS.2023.3244064. keywords: {Crops; Predictive models; Satellites; Yield estimation; Feature extraction; Data models; Vegetation mapping; Climate change; Crop yield; integrated gradients (IG); interpretability; long shortterm memory; remote sensing; Shapley (SHAP) values},
- B. Sisheber, M. Marshall, D. Mengistu and A. Nelson, "Assimilation of Earth Observation Data for Crop Yield Estimation in Smallholder Agricultural Systems," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 557-572, 2024, doi: 10.1109/JSTARS.2023.3329237. keywords: {Data models; Spatial resolution; Data integration; Yield estimation; Biological system modeling; Production; MODIS; Agricultural production; crop modeling; data fusion; phenology; remote sensing},
- 6. S. Yang et al., "Integration of Crop Growth Model and Random Forest for Winter Wheat Yield Estimation From UAV Hyperspectral Imagery," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 6253-6269, 2021, doi: 10.1109/JSTARS.2021.3089203. keywords: {Agriculture; Unmanned aerial vehicles; Yield estimation; Hyperspectral imaging; Data models; Vegetation mapping; Random forests; Hyperspectral remote sensing; random forest; the CERES-wheat model; unmanned aerial vehicle (UAV); wheat yield estimation},