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ARTICLE INFO ABSTRACT 
 Breast cancer is a significant global health concern, with the manual diagnostic 

process being time-consuming. The introduction of Computer-Aided Diagnosis 
(CAD) has emerged as a promising solution, facilitating quicker and more 
accessible assessments. However, concerns persist regarding the trustworthiness 
of these automated systems, particularly deep learning models, due to their 
inherently black-box nature. Transparency and interpretability are crucial 
elements, necessitating methods to visualize and comprehend the decision-
making process of the model. This research aimed to enhance the transparency 
and interpretability of deep learning models for breast cancer diagnosis. The focus 
was on developing a method to highlight prominent areas of histopathology slides 
using heatmaps. The "Histopathology Cancer Detection (HCD)" dataset was used 
in the investigation. Eight EfficientNet models were examined for fine-tuning, and 
a feature extractor for binary classification. The optimized model is further utilized 
to get the output of any particular layer or block of the model with GradCAM 
(Gradient-weighted Class Activation Mapping). Heatmaps are produced to show 
the area of the picture that contributed most to the classification. Notably, the 
model architecture remained unchanged to maintain diagnostic accuracy, while 
the introduction of heatmaps aimed to provide additional insights into the 
decision-making process. To validate the effectiveness of the proposed approach, 
human validation was conducted. Domain experts were presented with 
histopathology images along with the model-generated heatmaps. The purpose of 
the questionnaire was to obtain expert comments on the highlighted regions' 
alignment without altering the model architecture to preserve the performance of 
the model. The combination of the EfiicientNetB7 model as a feature extractor 
with an SVM activation function outperformed and achieved the accuracy and the 
area under the curve (AUC) of 98.95% and 0.9886, respectively. This research 
contributes to the ongoing efforts to make deep learning models for breast cancer 
diagnosis more transparent and trustworthy. 
 
Keywords: Breast cancer diagnosis; EfficientNet; GradCAM; Histopathology 
visualization; Heatmap, Interpretable Model 

 
1. Introduction 

 
With the use of interpretable machine learning models, clinicians would be better able to comprehend the 
rationale behind the model's recommendations and make more educated treatment decisions when results are 
presented understandably. For example, the Breast Cancer Treatment Recommender System uses patient data 
to provide suggestions for individualized treatment plans based on the patient's medical history, lifestyle, and 
cancer subtype, among other things. Interpretable machine learning models play a pivotal role in aiding 
clinicians' treatment decisions for breast cancer by[1]–[4] : 
● Increased comprehension and trust: Clinicians can comprehend the reasoning behind a specific 

treatment prescription made by machine learning models that are transparent in their decision-making 
processes. This openness increases confidence in the AI systems. 

● Tailored Care Programs: These models offer individualized treatment approaches based on factors 
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specific to each patient using, which clinicians can increase the efficacy of treatments for breast cancer. 
● Early Detection and Diagnosis: Mammograms and other medical imaging data can be precisely analyzed 

by machine learning models. They can support early diagnosis and detection of breast cancer for more 
effective therapy and improved patient outcomes. 

● Reduced Error and Variability: Interpretable models contribute to a decrease in diagnostic errors and 
treatment decision variations by offering data-driven insights. 

● Integration into the clinical workflow: Healthcare workers can more easily access and use AI-driven 
advice in addition to their clinical experience when interpretable models are incorporated into clinical 
workflows. 

● Ethical and Legal Considerations: Interpretable models guarantee that recommendations generated by 
AI follow moral and legal requirements. In the healthcare industry, patient safety and data privacy are of 
utmost importance. 

 
The visualization technique developed in this study not only addresses concerns about their black-box nature 
but also offers valuable insights for healthcare professionals in diagnostic decision-making. Notably, the 
model's accuracy remains the same despite the unchanged architecture, promising significant contributions to 
enhancing trust in automated systems for medical applications, notably in breast cancer diagnosis. 
The paper is organized as follows: Section 2 provides a comprehensive literature review, delving into earlier 
research. Details regarding the materials and procedures employed are presented in Section 3. Section 4 
presents the results and subsequent discussion. Finally, Section 5 encapsulates the conclusion and outlines 
future directions for the study. 
 

2. Literature Review 
 
Decision Support Systems(DSS) that use machine learning are becoming more and more common. The 
increasing use of these systems has sped up the transition to an increasingly computational society, increasing 
the likelihood that judgments made using algorithmic intelligence will have a big societal impact. However, the 
majority of these precise DSSs are still complicated "black boxes," meaning that even specialists are unable to 
completely comprehend the reasoning behind the systems' predictions due to their internal workings and 
concealed logic from the user.[5] 
Explainability and interpretability are closely associated concepts. However, it is also noted that the term 
"interpretable" is more commonly used in the machine learning community than "explainable."[5] Machine 
learning models like Support Vector Machine, Naïve Bayes, K-nearest neighbors, AdaBoost, and LightGBM 
have been applied for breast cancer prediction[6], [7]. These models are designed with built-in transparency 
and interpretability, which enables doctors and patients to comprehend how the model generates its diagnoses. 
Interpretability methodologies like SHAP (Shapley Additive Explanations) [8] are particularly instrumental in 
elucidating these models' decisions, offering crucial insights for medical professionals to make well-informed 
decisions regarding patient care and treatment plans  [9], [10], [11]. These models heavily rely on human-
crafted features engineered by domain experts to yield accurate predictions. 
Conversely, deep learning models possess the capability to automatically extract features from raw data, 
eliminating the necessity for manual feature engineering. It enables us to comprehend precisely what a model 
is learning, what further information the model has to provide, and the reasoning behind its decisions[12], [13]. 
However, despite their ability to self-learn features, deep learning models lack inherent interpretability 
features, making it challenging to comprehend their decision-making process. The advantages and distinctions 
between explainable and standard machine learning models are depicted in Figure 1. Explainable models help 
us understand how the model works and what factors are influencing its decisions. This can help build trust, 
causality, and informativeness in the model and ensure that the model is not biased or discriminatory [5], [15], 
[16], [17]. Explainable models can help us understand how these decisions were made and who is responsible 
for them. Some industries and regulatory bodies require that machine learning models be explainable to 
comply with regulations and guidelines [4], [17], [18].  Figure 2 illustrates the accuracy and interpretability of 
several machine learning algorithms [14]. In essence, conventional ML involves interpretable steps, whereas 
CNNs prioritize performance over explainability, making their decision-making process less 
transparent.[19].LIME (Local Interpretable Model-agnostic Explanations) generates local explanations for 
individual predictions by perturbing the input data and observing how the model's predictions change. This 
can provide insight into the specific factors that are influencing the model's decision for a particular case [20]–
[22]. 
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Figure 1: Comparing standard machine learning algorithms with explainable ones 

 

 
Figure 2: Accuracy versus interpretability for machine learning algorithms [14]. 

 
The following describes the specifics of the primary methods for enhancing interpretability in deep learning 
models: 
o Global Average Pooling (GAP): It is a technique used to reduce the spatial dimensions of a 3D tensor 
by taking the average of all values in each feature map. It condenses convolutional features for better 
localization without fully connected layers. In the deep learning model CAM and GAP layer after the last 
convolution layer and removing the fully connected layer in the model [23] generate heatmaps for each output 
class. 
o Class Activation Map (CAM): It is a technique used to visualize the areas of an image that contribute 
the most to a specific class prediction in a convolutional neural network. It does this by generating a heatmap 
that highlights the important regions of the input image. CAM utilizes a GAP layer post-final convolutional 
layers, highlighting crucial image regions for specific predictions. 
o Grad-CAM (Gradient-weighted Class Activation Mapping): It produces the activations without 
changing the model's architecture [24] by computing the first-order gradients concerning the final 
convolutional layer.These gradients highlight what the model focuses on when making predictions. Grad-CAM 
is an improvement over CAM, offering broader applicability without architectural restrictions [24], [25] [26]. 
Grad-CAM reveals which areas in the last convolutional layer's feature maps are activated, aiding in 
understanding feature importance [20], [21]. Augmented Grad-CAM [27] provides a high-resolution visual 
explanation of deep neural networks by increasing the resolution of heatmaps through augmentation. [28] 
o Grad Cam++: Grad Cam++ uses the first-order gradients of the output class score concerning the feature 
maps of the last convolutional layer to generate more accurate and sharper heat maps. It refines Grad-CAM, 
utilizing methods like SmoothGrad or Expected Grad-CAM, improving visualization accuracy [28]. Smooth-
grad++ [29] introduces noise in the images and then computes the gradients and heatmaps. Grad Cam++ [30] 
produces more sharp heatmaps and increases the localization accuracy. It computes higher-order derivatives. 
Table 1 lists a few deep learning models along with datasets and performance metrics that have been used to 
diagnose breast cancer in the literature. Table 2 provides a summary of previous work in the domain of 
interpretability of deep learning models for cancer diagnosis using Grad-CAM. 
 

Table 1: current standards Models of deep learning applied to the detection of breast cancer 

Reference Name of Model Dataset Task 
Performance 
Metric 

[31] InceptionV4 ICIAR-2018 Binary Classification Accuracy:93.7% 
[32] DenseNet 121with SENet BeakHis Binary Classification PRR:89.5, IRR:89.1 

[33] 
MobileNet and EfficientNet-
B3 

TCGA Segmentation Sensitivity99% 

[34] EfficientNet-B3 RPCam Binary Classification Accuracy: 97.9% 
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[35] EfficientNet-B6 RPCam Binary Classification Accuracy: 97.94% 

[36] EfficientNet-B2 ICIAR-2018 
Multi-class 
Classification 

Accuracy: 98.33% 

 
Table 2: Summary of previous works in literature utilized Grad-CAM for making deep learning models 

interpretable in biomedical imaging 
Reference Name of  Model Types of Images Accuracy/ 

AUC 

[37] VGGNet Mammographic Image Analysis Society (MIAS) and 
Digital Database for Screening Mammography (DDSM) 

92% 

[38] VGG16 
ResNet50 

Alex_Net, and 
MobileNet 

Br35H::Brain Tumor Detection 2020 97.83% 
99.67% 
99.3% 
98.5% 

[39] CNN model from 
scratch 

A private dataset consisting of X-ray images of Covid 19 98% 

[40] 3D CNN model LUNA 16 Dataset{ X-ray images of Lung cancer} 0.97 

[41] CNN CT images 
For neck and head cancer 

0.92 

[42] DenseNet-169 
EfficientNet-B5 

A private dataset consisting of Mammography 0.952 ± 0.005 
0.954 ± 0.020 

[43] squeeze Net Histopathology Breast cancer Image dataset 90.3% 

 
3. Method and Materials 

 
This section provides an overview of the dataset utilized for training and validation, offering a concise preview 
of its key parameters. Subsequently, the tools employed in the study are itemized. The methodology is then 
explained, detailing the workflow implemented throughout the research process. Additionally, detailed insights 
are provided regarding the application of EfficientNet and GradCAM. 
 
3.1 Dataset 
Histopathology Cancer Detection (HCD) 
The Histopathology Cancer Detection dataset was created as part of a Kaggle competition to create algorithms 
that could recognize metastatic cancer in lymph node sections' histological pictures. Many histopathologic 
pictures of lymph nodes, each categorized as positive (cancerous) or negative, are included in the dataset (non-
cancerous). The dataset comprises histopathologic images that are employed in the process of identifying 
cancer in tissue from lymph nodes. It focuses on identifying metastatic tissue in these photos specifically. 
327,680 color photos, each measuring 96 x 96 pixels, make up the dataset. This dataset has been used as the 
foundation for cancer detection-related Kaggle competitions. The distribution of labels in the dataset and 
sample images are shown in Figure 3 and Figure 4, respectively. 
Web Link: https://www.kaggle.com/c/histopathologic-cancer-detection/data 

 
Figure 3: sample image distribution 
in the dataset 
 

 
 

 
Figure 4: Sample images of the dataset 
 

3.2 Tools 
Python is used to implement the models utilizing the TensorFlow and Keras frameworks as the backend. The 
Keras library was used to import the EfficientNet models (B0-B7).The Kaggle kernel on the GPU virtual 
machine was used for all of the experiments, with the following specifications: 

https://www.kaggle.com/c/histopathologic-cancer-detection/data
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GPU: Nvidia Tesla P100; performance: 9.3 TFLOPS; GPU memory: 16GB; GPU memory clock: 1.32 GHz 
 
3.3 Workflow 
Figure 5 shows the workflow of the suggested methodology utilized for expert validation with binary breast 
cancer classification and heatmap generation. The accuracy, AUC, and recall  are used to assess the 
performance  of the models. The next step after binary classification  is to use the Grad-CAM algorithm to create 
heat maps. In addition to displaying the label of the image, this attempts to provide visual explanations by 
highlighting the regions that are involved in classifications. A questionnaire was administered to pathologists, 
presenting snippets of the output generated by the model for  validation. The opinions of the pathologists are 
included after the provided snippets shown in the original image. 
 
3.4 EfficientNet 
EfficientNet is a group of robust convolutional neural network (CNN) architectures, namely EfficientNetB0-
EfficientNetB7, renowned for their efficiency and accuracy in image classification tasks. These models boast a 
sophisticated architecture that balances depth, width, and resolution to optimize performance. EfficientNet 
architecture consists of seven distinct blocks and involves a hierarchy of layers within each block, incorporating 
intricate arrangements of depth-wise separable convolutions, normalization layers, and shortcut connections, 
contributing to its impressive efficiency and accuracy. In the experiment, EfficeientNet architectures B0-B7 
were used with transfer learning for feature extraction, and then SVM was applied for binary classification of 
histopathology images from the HCD dataset. Additionally, data augmentation was applied to increase the 
images in the dataset. Training and testing sets were divided into an 80:20 ratio in the dataset. The 96x96x3 
histopathological image is sent into the model's input layer. Concatenation of "GlobalmaxPooling", 
"GlobalAverragePooling", and "Flatten" layers followed by  dropout layer, and finally, "sigmoid" layers or 
SVM(Support Vector Machine) are added in case of fine-tuning and feature extractor respectively after the 
"efficientNet-b7"(base model). An Adam optimizer with a learning rate of 0.001 and a binary cross entropy loss 
function was used to compile the model. 
 
3.4.1 Grad-CAM 
Grad-CAM is an inference tool that generates graphical information by extracting gradients from model 
convolutional layers. These gradients identify key areas in input photos and represent high-level visual 
patterns. Grad-CAM uses the spatial information that convolutional layers store to produce heatmaps that 
emphasize the areas of the image that influence model selections. This gives the deep learning model's 
judgments a visual justification. As a visualization method for comprehending CNNs and their decision-making 
processes, the Grad-CAM has several benefits, including interpretability, no architecture modification, 
localization, and applicability to different tasks. The experiment's algorithm is provided in Algorithm 1 for 
understanding. 
 

Algorithm 1. Working Procedure of  make_gradcam_heatmap 
Input: img, model, efn_model,conv_layer_name 
Output: heatmap of the histopathology image and the label of the image 
1.      Begin 
2.       img_arrày→Prepares the input image for processing 
3.       conv_layer→efn_model.get_layer(conv_layer_name) 
4.      conv_layer_model→ Model(efn_model.inputs,conv_layer.output) 
5.      classifier_model→Model(conv_layer_model,output,efn_model.output) 
6.      classifier_model→Model(classifier_model.input,model.layers) 
7.      conv_layer_output→ classifier_model(img-arr) 
8.      pred→ classifier_model(conv_layer_output) 
9.      grads→ GradientTape.gradient( pred , conv_layer_output) 
10.   conv_layer_output→conv_layer_output *grads 
11.   heatmap→mean(con_layer_output)  
12.   label→[1 if pred>=0.5 else 0] 
13.   End 
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Figure 5: Workflow of the proposed methodology used for generating heatmaps and expert validation with   
binary breast cancer classification 
 

4 Results and Discussion 
 
This section is divided into two subsections. The first subsection presents the results achieved for binary 
classification of histopathology images by EfficienNet models as fine-tuning and as a feature extractor. The 
second subsection presents the results obtained to utilize the best model for binary classification with  Grad-
CAM for visualizing the output of a specified block of the model, generating the heatmaps and the output 
achieved by superimposing the generated heatmap. 
 
4.1 Binary Classification of Histopathology Images 
The performance metrics of the proposed models as feature extractor and fine-tuning are shown in Table 3 and 
Table 4, respectively. 

Table 3: Performance matrices of EfficientNet as feature extractor  for binary classification 

Model 
Validation 
Accuracy 

AUC 
Precision Recall F1- score 

Benign Malignant Benign Malignant Benign Malignant 

B0 + SVM 0.9835 0.9829 0.9865 0.979 0.9858 0.9801 0.9861 0.9796 

B1 + SVM 0.9856 0.9852 0.9885 0.9815 0.9874 0.983 0.9879 0.9822 

B2 + SVM 0.9871 0.9866 0.9889 0.9845 0.9895 0.9837 0.9892 0.9841 

B3 + SVM 0.9876 0.9872 0.9897 0.9846 0.9896 0.9848 0.9896 0.9847 

B4 + SMV 0.9889 0.9887 0.9916 0.985 0.9898 0.9876 0.9907 0.9863 
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B5 + SVM 0.9887 0.9884 0.9911 0.9852 0.99 0.9868 0.9905 0.986 

B6 + SVM 0.9895 0.9892 0.9917 0.9862 0.9906 0.9879 0.9912 0.987 

B7 + SVM 0.9895 0.9891 0.9913 0.9868 0.991 0.9872 0.9912 0.987 

 
Table 4: Performance matrices of EfficientNet as fine-tuning for binary classification 

Model 
Validatio
n 
Accuracy 

AUC 
Precision Recall F1- score 

Benign 
Malignan
t 

Benign 
Malignan
t 

Benign 
Malignan
t 

B0 0.9818 0.9800 0.9803 0.984 0.9893 0.9707 0.9848 0.9773 

B1 0.9837 0.9831 0.9866 0.9793 0.9859 0.9803 0.9863 0.9798 

B2 0.9855 0.9853 0.9894 0.98 0.9863 0.9844 0.9878 0.9822 

B3 0.9859 0.9858 0.9902 0.9795 0.986 0.9857 0.9881 0.9826 

B4 0.9881 0.9879 0.991 0.9837 0.9889 0.9868 0.99 0.9853 

B5 0.987 0.9868 0.9903 0.9822 0.9879 0.9857 0.9891 0.9839 

B6 0.9888 0.9886 0.9894 0.9879 0.9918 0.9844 0.9906 0.9861 

B7 0.9889 0.9886 0.9911 0.9856 0.9902 0.987 0.9907 0.9863 

4.2 Visualization of the layers of the  model and heatmap generation 
In this section, histopathology images, paired with their respective heatmaps and overlays, are generated by 
the model. The expert validation scores are included in the notes following the snippet. Four sets of images are 
included. Figures 6 and 9 include heat maps of Histopathology Images classified correctly as Benign and 
Malignant, respectively. Figures 8 and 11 include heat maps of Histopathology images classified incorrectly as 
Malignant and Benign, respectively. Figure 7 and  Figure 10 dissect  the output of the convolution layer across 
the seven blocks of the EfficinetNetB7 model when it correctly classifies Benign and Malignant tissue from the 
histopathology image, respectively. 
 
4.3 Expert Validation 
Three columns consisting of the following image were presented to expert and experienced pathologists: 
1. Original Image: It is a copy of the original biopsy slide. 
2. Overlay: It is the biopsy slide with the important section marked in red and unimportant parts marked in 

blue. 
3. Heat Map: It is the heat map's importance across the biopsy slide. 
 
The expert is asked to judge the performance of the model by seeing the highlighted region marked by the 
model. 

 
Figure 6: Original Image and Model Output where Benign slides classified as Benign 

 
Case 1: The biopsy slide shown in Figure 6  showcases Benign tissue samples accurately classified by our 
model, with the highlighted areas of interest depicted in red within the accompanying heatmaps. The model's 
precision is validated by four out of four pathologists in the survey, who independently identified and 
concurred with the highlighted regions. 
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Block 1 

 
Block 2 

 
Block 3 

 
Block 4 

 
Block 5 

 
Block 6 

 
Block 7 

 
Final output 

 
Figure 7:Convolution layer dissection across the seven blocks of the EfficinetNetB7 model with Grad-CAM 

when it correctly classifies Benign histopathology image 
 

 
Figure 8: Original Image and Models output where Benign slides classified as Malignant 

 
Case 2: The biopsy slide in Figure 8  depicts benign tissue samples misclassified as malignant by the model, 
with the heatmap revealing the specific section leading to this erroneous decision. Notably, three out of four 
pathologists in our survey acknowledge the model's confusion and advocate for additional clinical context to 
enhance accuracy. 
Case 3 The biopsy slide presented in Figure 9 features malignant tissue accurately classified by our model, 
with the highlighted areas of interest depicted in red within the accompanying heatmaps. It is noteworthy that 
3/4 pathologists in our survey concur with the model's highlighted regions. This variance in expert opinions 
underscores the complexity of pathology interpretation and emphasizes the potential complementarity 
between machine learning models and human expertise in refining diagnostic accuracy. 
Case 4: Figure 11 presents   the  biopsy slide exhibiting malignant tissue incorrectly classified by the model, 
with the highlighted areas of interest shown in red on the accompanying heatmaps. Notably, three out of four 
pathologists in our survey acknowledge the model's confusion and advocate for additional clinical context to 
enhance accuracy. 
 

 
Figure 9: Original Image and Model output where Malignant slides classified as Malignant 
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Block 2 

 
Block 3 

 
Block 4 

 
Block 5 

 
Block 6 

 
Block 7 

 
Final output 

 
Figure 10:Convolution layer dissection across the seven blocks of the EfficinetNetB7 model with Grad-CAM 

when it correctly classifies Malignant histopathology image 
 

 
Figure 11: Original Image and Models Output where Malignant slides classified as Benign 

 
5 Conclusion 

 
In conclusion, the timely and accurate diagnosis of breast cancer is paramount for improving survival rates, 
emphasizing the significance of advanced diagnostic tools. In this study, the utilization of EfficientNet B7 
achieved an impressive 99.89% accuracy, laying a robust foundation for reliable breast cancer diagnosis. 
Notably, this accuracy surpasses that reported in related studies highlighted in the literature review. The 
alteration of the model architecture to incorporate visualization through heatmaps provided a crucial step 
toward enhancing interpretability in deep learning-based diagnostics. The introduction of explainable deep 
learning, manifested through heatmaps, offers healthcare professionals valuable insights into the decision-
making process of the model. However, it is essential to acknowledge the limitations of this study. The trained 
model's lack of diversity hinders its broad applicability to various histopathology images, and the validation, 
though conducted with pathologists, was limited in number and lacked unanimity. These limitations 
underscore the need for future developments in creating more versatile models and expanding validation 
efforts to ensure the robustness and generalizability of the proposed approach. Despite these challenges, this 
research lays a promising foundation for further advancements in transparent and trustworthy deep-learning 
models for breast cancer diagnosis. 
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