
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2024, 30(5), 5051-5062
ISSN:2148-2403

https://kuey.net/ Research Article

A Novel Mobile Agent-Based Intrusion Detection
Framework For Network Security Using Sl-Gat And Pp-

FQCC

Rajendra Singh Kushwah1*, Kamal Kishor Prasad2

1*Professor, Dept. of Computer Science and Engineering, Sri Satya Sai University of Technology and Medical Sciences, Sehore. Email :
rajendrasingh.ind@gmail.com
2Research scholor, Sri Satya Sai University of Technology and Medical Sciences, Sehore. Email : mr.kamalprsd@gmail.com

Citation: Rajendra Singh Kushwah, et al (2024), A Novel Mobile Agent-Based Intrusion Detection Framework For Network Security
Using Sl-Gat And Pp-Fqcc, Educational Administration: Theory and Practice, 30(5), 5051-5062, Doi:10.53555/kuey.v30i5.3748

ARTICLE INFO ABSTRACT

 Mobile Agent is known as a software component that collects the data from hosts
in the network. However, security is a major problem in MA. Therefore, IDS is
used to detect malicious activities in the network. But, none of the works
validated whether the MA is cloned or real. Therefore, the paper presents an MA-
based IDS framework for network security using SL-GAT and PP-FQCC. Firstly,
the MA and host are registered with the centralized server; in the meantime,
UUID is generated for the MA. Afterward, MA is securely localized by using
CMP-GAO. Then, MA is authorized and the data is secured. At this point, IDS
checks whether the data is attacked or not. Here, IDS is trained based on pre-
processing, graph construction, and classification. Finally, the classifier classifies
whether the data are attacked or non-attacked. The results proved that the
proposed model achieved a high-security level of 98.87%, which outperformed
prevailing techniques.

Keywords: Intrusion Detection System (IDS), Mobile Agent (MA), Conway-
Maxwell-Poisson-Giant Armadillo Optimization (CMP-GAO), Transposition
Cipher–Message Authentication Code (TC-MAC), Partial Public key-based-
FourQ Curve Cryptography (PP-FQCC), K-Nearest Neighbors (KNN), Smish
Logish-Graph Attention Network (SL-GAT), and Universally Unique Identifier
(UUID).

1. INTRODUCTION

With the rapid development of mobile edge computing, mobile data traffic has increased (Garg et al., 2021).
So, security is the major concern while sharing data packets through the internet (Lai et al., 2021). Denial of
Service (DoS) and zero-day exposure attacks are the most common security threats (Cao et al., 2020). So,
paying attention to security attacks is important to avoid data loss and tampering (Sun, 2022). Therefore, IDS
is used to detect the anomaly actions in the network (Nie et al., 2022). An IDS is a first-level security system,
which works on a per-packet basis (Krishnan et al., 2020).
The existing studies used some anomaly detection methods, such as support vector machines, Gated
Recurrent Unit (GRU), and hybrid techniques with signature-based schemes to detect intrusions in the
network. But, these models are prone to overfitting problems (Ramaiah et al., 2021, Liu et al., 2021). Also,
some authorization schemes, such as fine-grained access control mechanisms and symmetric and asymmetric
cryptographic algorithms are used to ensure the security of the networks (Sindjoung et al., 2023, Hou et al.,
2020). However, these models are inaccurate in providing network security. Therefore, an efficient model
called MA-based IDS framework using SL-GAT and PP-FQCC has been proposed to improve network
security.

1.1 Problem Statement
Some limitations of the existing techniques are described below,
 None of the existing works validated whether the MA is cloned or real.
 (Ren et al., 2023) Existing studies do not concentrate on secure localization processes.
 (Singh et al., 2022) In existing works, the data prevention process is not performed in IDS.

https://kuey.net/

5052 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

 MA-based IDS generates more false positives and false negatives.

1.2 Objectives
The key objectives of the proposed model are given below,
 TC-MAC is utilized to validate the MA.
 CMP-GAO is introduced to securely relocate the MA.
 PP-FQCC is suggested to secure the data in the IDS.
 KNN graph and SL-GAT classifier are used to reduce the false positives and negatives.

The rest of this paper is organized as: section 2 illustrates the related works and their limits, section 3
summarizes the proposed system, section 4 conveys the results and discussion, and section 5 concludes the
proposed work with future recommendations.

2. LITERATURE SURVEY

(Ren et al., 2023) established a Multi-Agent Feature Selection IDS (MAFSIDS) for attack detection in
networks. The GCN (Graph Convolutional Network) was used for extracting deep features from the data. The
features were extracted accurately using MAFSIDS. However, the edges of computing were not localized,
which led to attack detection problems during data transfer.
(Wang et al., 2020) deployed IDS for Empowered Intruders (IDEI) in wireless networks. The mobile nodes
were tracked using the IDEI method. The mobile service nodes helped in detecting the intrusion. Thus, the
model obtained better intrusion detection. Yet, the nodes were insufficient, which resulted in improper attack
detection.
(Chen et al., 2020) presented federated learning-based IDS for wireless edge networks. Here, the Federated
Learning-based Attention GRU (FedAGRU) was used for intrusion detection. Hence, the intrusion detection
was improved accurately. On the contrary, the FedAGRU was affected by poison attacks, thus reducing the
attack detection rates.
(Parsamehr et al., 2020) evaluated IDS for Network Coding-enabled (NC) mobile cells. Here, the detection
was based on homomorphic MAC schemes. The Intrusion Detection and Location-Aware Prevention (IDLP)
mechanism identified the attacker’s exact location and blocked it to prevent an attack. Hence, the NC mobile
cell depletion was reduced. But, the data could not be decoded properly, which made the model unsuccessful.
(Gong et al., 2021) introduced a two-phase algorithm for cyber intrusion detection in edge computing. Here,
the selected features were classified using the Modified Back-Propagation Neural Network (MBPNN). Hence,
a higher detection rate was achieved. Yet, the MOGA method could not get enough features, which affected
the performance of attack detection.

3. PROPOSED MA BASED IDS

In the proposed model, the SL-GAT classifier is used to detect security threats, and the PP-FQCC algorithm is
used to secure the data. The structural diagram of the proposed system is shown in Figure 1.

Figure 1: Structural diagram of the proposed model

5053 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

3.1 Registration
Initially, the MA and the host are registered with the centralized server. MA details, such as trust value,

energy, and distance are collected for registration. In the meantime, partial public  and private keys  are

generated for hosts. The key is generated using the PP-FQCC algorithm. Afterward, UUID is generated for the

MA. The registered MA ma and hosts ho are expressed as,

 aihoma  ,,,,),(332211   (1)

Where, ai , indicate the total numbers of ma and ho .

3.2 MA Secure Localization
Then, the MA is securely localized based on the minimum distance and high trust value of the source and
destination hosts. Here, the CMP-GAO algorithm is utilized for secure localization. GAO provides suitable
solutions to optimization problems. But, premature convergence problems occurred due to the random

position updation. So, CMP is replaced to overcome these issues. Primarily, the population N of Giant

Armadillos (GA) is initialized. The N is considered as the registered MA, which is expressed as,

oToTqTT

opqpp

oq

oTT

phoma

nnn

nnn

nnn

N

N

N

N


















































,,1,

,,1,

,1,11,11

),(















 (2)

)(,, qqqpqqp lowupRlown  (3)

Where, qpn , indicates the
thq dimension of the problem, pN is the

thp GA, which is the candidate solution,

T is the total number of GA, o is the total number of problem variables, Tp ,,3,2,1  and

oq ,,3,2,1  , qpR , denote random parameters, and qlow and qup indicate the lower and upper bound,

respectively. The fitness function I is calculated by considering the minimum distance)'min(d and high

trust value)max(c ,

1

1

1

1

)(

)(

)(

)'min()max(


















































TT

p

TT

p

NI

NI

NI

I

I

I

dcI









 (4)

)(IBestNbest  (5)

)(IBest is the best fitness value for the best candidate solution bestN . In the exploration phase, the position

is updated based on the attack of GA towards the termite mounds during hunting. Here, the CMP is replaced
in the random position updation to make the exploration easier. For each GA, the set of selected Candidate

Termite Mounds (CTM) iV is described as,








0

)!(
)!(p

p
i

p
p

I

N
V (6)

Here, pI indicates the fitness of the
thp GA and p indicates the number of GA. The GA randomly selects

one of the CTMs for hunting. The updated new position
new

qpn , is formulated as,

5054 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

)(,,,,, qpqpiqpqp

new

qp nrnVRnn  (7)

p

new

qpp

new

p

p
N

n

else

IIif
N

,



 

 (8)

Where, qprn , is the random number with set{1,2} and
new

pI is the fitness function of
new

qpn , . In the exploitation

phase, the position is changed based on GA digging in termite mounds to feed on termites. The new suitable

position
Sp

qpn , is defined as,

iter

lowupRlow
nn

qqqpq

qp

Sp

qp

)(,

,,


 (9)

p

Sp

qpp

Sp

p

p
N

n

else

IIif
N

,



 

 (10)

Where, ',,3,2,1 iteriter  is the total number of iterations. This process is continued until the last

iteration. Finally, the relocated MA L is expressed as,

eWhereLLLLL e ,,3,2,1},,,,{ 321    (11)

Where, eL is the total number of L .

Pseudocode for CMP-GAO

Input: Registered MA),(homa 

Output: Relocated MA L

Begin

Initialize population N

While 'iteriter 

For each N

Compute dimension qpn ,

Estimate)(IBestNbest 

Update new position

If p

new

p II 

new

qpn ,

Else

pN

End If
Update new suitable position

If p

Sp

p II 

Sp

qpn ,

Else

pN

End If
End For
End While
End

Next, the relocated MA is authorized, which will be briefly explained in the following section.

3.3 MA Authorization

5055 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

Next, the L are authorized by using TC-MAC. MAC algorithm efficiently prevents the servers and data

packets from man-in-the-middle attacks. MACs don’t secure the messages against intruders. On the sender

side, the message G is converted into a ciphering format using TC. The ciphered text ' is given below,

)()(' 1 zzz KJFVG (12)

Where, zV and zJ are the left and right-hand parts of the intermediate cipher, respectively and 1zK denotes

the key bits. Then, the secret key  is generated by using the  , which is expressed as,

)(sec    keyret
 (13)

After that, MAC)(U is created on the sender side. ' and  are given as an input to MAC and is defined as,

  'U (14)

Similarly, the created MAC)(E at the receiver side is checked with)(U for similarity)( , which is defined

as,

cloned

clonednot

else

EUif 



 


)(

 (15)

If MA is cloned, then a security alert is sent to the centralized server; otherwise, the data  is secured.

3.4 Data security

Then, the data  is secured by using the PP-FQCC algorithm. ECC speeds up the key generation,

encryption, and decryption process. But, the computation is complex due to the negative points in the
variables. So, the FourQ curve is used to overcome these issues. At the time of data security, the key is fully

generated. Initially, FourQ curves  are discovered for generating the keys and are defined as,

'''' 4321 baxbxaxx  (16)

Where, 'a and 'b indicate the horizontal and vertical axis and x , 1x , 3x and 4x are constants. Next, the keys

are generated from the FourQ curves. The fully generated public key  is formulated as,

QP *)( (17)

Where, P indicates fully generated private key. Then, the data are encrypted, which is derived as,

QrC 1 (18)

)(2   rC (19)

Where, 1C and 2C denote the encrypted data and r defines the random number. Finally, the decryption is

performed to decrypt the data, which is expressed as,

1))(2(CPC   (20)

Where,  is the decrypted data.

3.5 IDS
Here, the IDS checks whether the data is attacked or not.

3.5.1 Dataset
The IDS takes UNSW_NB15 datasets to train the classifier, which contains the data, such as service, synack,

smean, sload, and sloss. The data in the dataset
u is expressed as,

 ,,3,2,1],,,,[321   uHereu
 (21)

5056 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

Where,
1 is the first data in

u .

5057 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

3.5.2 Pre-processing

Next, the
u are pre-processed to improve the quality. Firstly, the duplicate data are eliminated. Then, the

missing values in
u are replaced randomly, which is defined as  . After that, numeralization


H is

performed to convert the string data into numerical values, which are expressed as,

gwhereHHHHH g ,,2,1)()(321    (22)

Then,

H is normalized, which converts all the numbers into 0 or 1. The normalized data M is defined as,

)min()max(

)min(
)(
















HH

HH
HM (23)

Finally, the pre-processed data
 is determined as,

ZM Z ,,2,1},,,,{)(321    (24)

Where,
2 is the second

 .

3.5.3 Graph Construction

Next, the graph is constructed for the
 by using KNN graph algorithm. Primarily, the

 is initialized and

given as an input in this process. This process decides the number of clusters by grouping them based on the

protocols. The centroids lB with the total j number of centroids are selected randomly and are expressed as,

jlwhereBBBBB jl ,,2,1},,,,{ 321   (25)

Then, the Euclidean distance D is calculated, which is defined as,

2

1

,

1,1

)(),(







 



Zj

l

ll BBD




(26)

Next, a new centroid  is computed by calculating the average for all data, which is expressed as,














Zj

l

l

Zj

l

l

A

A

,

1,1

,

1,1









 (27)

Where,


lA is the average of data. These steps are continued until the best clusters are found. The total ab

number of constructed graphs is formulated as,

abwhereab ,,2,1),,,,(321     (28)

Here,  denotes the constructed graph.

3.5.4 Classification
Afterward, the classifier detects whether the data is attacked or not attacked by using SL-GAT. GAT
superiorly performs in the data described in graphs. But, it adds more weight parameters, so training time is
increased. So, the SL activation function is added to provide efficient classification. The architectural diagram
of the proposed classifier is shown in Figure 2.

Figure 2: Architectural diagram of SL-GAT

5058 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

Initially,)( is fed to the embedding layer. The total  number of embedding layers  encoded)( into

low dimensional space, which is expressed as,

  ,,3,2,1},,,,{ 321   where (29)

Then, the output of  is subjected to the SL activation function
 along with the self-attention

mechanism. The
 reduces the training time of the long sequence inputs, which is derived as,

 
)(1

))((
))()(()(

2






















e

f (30)

Where, f and  represent the linear functions and  indicates the sigmoid function. Then, the attention

mechanism dC calculated with weights tW and SL is equated by,













vt

tt

T

tt

T

d
WWh

WWh
C

])||[(exp(

]))||[(exp(
)(

'

'






 (31)

Where,
'Th
indicates the transpose matrix, ||denotes the concatenation operation, and Yd ,,2,1  , where

Y is the total number of output values obtained from dC . Afterward, the output of dC is fed to the output

layer kO , which is formulated as,









 

 

Y

d vt

tddk WC
d

CO
1

1
)( (32)

Here, Fk ,,2,1  , where F is the total number of kO . Finally, the kO delivers the results, such as

Attacked)( or Non-attacked)( . Also, kO classifies the types of attacks, such as reconnaissance, backdoor,

DoS, and many others.

Pseudo-code for SL-GAT

Input: Constructed graph)(

Output: Attacked)( or Non-attacked)(

Begin

Initialize)(

Set]1[it

While)(maxitit 

For each)(

Perform 

Compute  
)(1

))((
))()(()(

2






















e

f

Update weight tW

Estimate SL activation function

Find 







 

 

Y

d vt

tddk WC
d

CO
1

1
)(

End For
End While
End

5059 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

The pseudo-code given above describes the process of the SL-GAT classifier.

4. RESULTS AND DISCUSSION

Here, the performance of the proposed model is analyzed and compared with the existing methods. The
metrics were obtained by working on the PYTHON platform.

4.1 Dataset Description
The evaluation of the proposed work is done using the UNSW_NB15 dataset. From the total data, 80% data is
used for training and 20% for testing and is given in Table 1.

Table 1: Dataset Details

Data UNSW_NB15

Total 257674

Normal 93000

Attacked 164673

Testing Normal 74400

Attacked 131738

Training Normal 18600

Attacked 32934

4.2 Performance Analysis
In this section, the performance of the proposed techniques is validated to show the better performance of the
proposed techniques.

Figure 3: Comparative Analysis for TC-MAC

The proposed TC-MAC algorithm was compared with the existing Stream Cipher-MAC (SC-MAC), Hill
Cipher-MAC (HC-MAC), Vignere Cipher-MAC (VC-MAC), and Caesar Cipher-MAC (CC-MAC) as shown in
Figure 3. The MA authentication was done based on the sender and receiver host public key. Thus, the MAC
was created within 1247ms, and the MA verification was done within 1214ms. But, the existing techniques
verified the MA in an average of 2262ms, which is higher than the proposed techniques. Thus, the TC-MAC
technique verified the MA more quickly than prevailing models.

5060 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

Table 2: Comparative Analysis for SL-GAT

Techniques Precision (%) Recall (%) F-Measure (%)
Proposed SL-GAT 98.7456 99.2659 98.4082
GAT 96.1208 97.4587 97.4862
RNN 94.3254 96.2608 95.6324
DBN 91.3265 93.6324 92.1046
DNN 88.7045 91.2347 89.6521

Figure 4: Graphical Comparison for SL-GAT

The metrics achieved by the proposed and existing classifiers are given in Table 2 and Figure 4. The proposed
model classified the attack with Precision of 98.7456%, Recall of 99.2659%, F-Measure of 98.4082%,
Accuracy of 98.5915%, Sensitivity of 99.2054%, Specificity of 97.5609%, True Positive Rate (TPR) of
99.0737%, and True Negative Rate (TNR) of 97.5609%. The existing GAT, Recurrent Neural Network (RNN),
Deep Belief Network (DBN), and Deep Neural Network (DNN) obtained lower metrics values than the
proposed work. The proposed model used the SmishLogish activation function, which more precisely
classified the attacks than the existing techniques.

Table 3: Comparative Analysis for PP-FQCC

Methods Encryption Time (ms) Decryption Time (ms)

Proposed PP-FQCC 968 987

ECC 1357 1411

RSA 1784 1823

ElGamal 2154 2254

AES 2686 2745

5061 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

Figure 5: Comparison of Security Level

The PP-FQCC method was compared with existing models regarding Encryption time (ET), Decryption Time
(DT), and Security Level (SL) as given in Table 3 and Figure 5. The proposed model secured the data with ET
of 968ms, DT of 987ms, and SL of 98.87%. The existing ECC, Rivest–Shamir–Adleman (RSA), ElGamal, and
Advanced Encryption Standard (AES) obtained SL of 96.83%, 94.43%, 92.74%, and 89.22% and higher ET
and DT than the proposed technique. The usage of the FourQ curve in ECC made the proposed model secure
the data superiorly.

Figure 6: Performance Analysis for CMP-GAO

Figure 7: Comparison regarding Throughput

5062 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

The localization of MA was done using the CMP-GAO technique. Here, the hunting of the GA was done
regarding the CMP distribution function. Therefore, the MA was localized in a Response Time of 4738ms and
Throughput of 7305 kbps. As depicted in Figures 6 and 7, the existing optimizers GAO, Osprey Optimization
Algorithm (OOA), Lyrebird Optimization Algorithm (LOA), and Whale Optimization Algorithm (WOA)
obtained higher Response Time and lower Throughput than the proposed technique. Thus, the CMP-GAO
performed better than the existing optimizers.

Table 4: Comparison of Related Works

Study Method Dataset Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Proposed
Work

SL-GAT UNSW_NB15 98.5915 98.7456 99.2659 98.4082

(Ribeiro et al.,
2020)

OneR Real Time Data 97.27 97.79 98.60 98.19

(Yadav et al.,
2022)

XGBoost UNSW_NB15 98 97.9 97.5 94.10

(Ajao & Apeh,
2023)

GARL UNSW_NB15 98.1 97 - 98

(Schmitt,
2023)

GBM NSL_KDD 97.78 97.59 94.44 94.37

(Singh et al.,
2022)

EHIDF UNSW_NB15 90.25 94.36 97.69 94.35

The comparison of the proposed work with the existing models is given in Table 4. The SL-GAT technique
classified the attack with a Precision of 98.7456%. But, the existing Extreme Gradient Boosting (XGBoost)
and Edge-based Hybrid Intrusion Detection Framework (EHIDF) used limited features for classification,
which obtained an F-Measure of 94.10% and 94.35%. The One Rule (OneR), Genetic Algorithm-Based
Reinforcement Learning (GARL), and Gradient Boosting Machine (GBM) could not detect the attack in the
network. Thus, these works obtained lower Precision and Recall values than the proposed classifier. Hence,
SL-GAT achieved better performance than prevailing classifiers.

5. CONCLUSION

This paper proposed an effective framework for intrusion detection in networks based on Mobile Agents. The
authenticated MA was localized using the CMP-GAO technique with a Response Time of 4738ms. Next, the
MA was authorized using TC-MAC, which verified the MA in 1214ms. The data of MA was secured with
98.87% SL using the PP-FQCC method. Finally, the intrusion in secured data was detected using SL-GAT
with an Accuracy of 98.5915%. Therefore, it can be concluded that the proposed model effectively secured the
network based on Mobile Agents.

Future Scope
Even though the attack on the data transferred through MA was detected as an intrusion, the attack on MA
was not considered. Hence, in the future, MA attack prevention will be considered for effective data transfer.

REFERENCES

Dataset link: https://www.kaggle.com/datasets/mrwellsdavid/unsw-nb15
1. Ajao, L. A., & Apeh, S. T. (2023). Secure edge computing vulnerabilities in smart cities sustainability

using petri net and genetic algorithm-based reinforcement learning. Intelligent Systems with
Applications, 18, 1–21. https://doi.org/10.1016/j.iswa.2023.200216

2. Cao, X., Fu, Y., & Chen, B. (2020). Packet-based intrusion detection using Bayesian topic models in
mobile edge computing. Security and Communication Networks, 2020, 1–12.
https://doi.org/10.1155/2020/8860418

3. Chen, Z., Lv, N., Liu, P., Fang, Y., Chen, K., & Pan, W. (2020). Intrusion detection for wireless edge

https://doi.org/10.1016/j.iswa.2023.200216
https://doi.org/10.1155/2020/8860418

5063 Rajendra Singh Kushwah, et al. / Kuey, 30(5), 3748

networks based on federated learning. IEEE Access, 8, 217463–217472.
https://doi.org/10.1109/ACCESS.2020.3041793

4. Garg, S., Kaur, K., Kaddoum, G., Garigipati, P., & Aujla, G. S. (2021). Security in IoT-driven mobile edge
computing: New paradigms, challenges, and opportunities. IEEE Network, 35(5), 298–305.
https://doi.org/10.1109/MNET.211.2000526

5. Gong, Y., Liu, Y., & Yin, C. (2021). A novel two-phase cycle algorithm for effective cyber intrusion
detection in edge computing. Eurasip Journal on Wireless Communications and Networking, 2021(1), 1–
22. https://doi.org/10.1186/s13638-021-02016-z

6. Hou, Y., Garg, S., Hui, L., Jayakody, D. N. K., Jin, R., & Hossain, M. S. (2020). A data security enhanced
access control mechanism in mobile edge computing. IEEE Access, 8, 136119–136130.
https://doi.org/10.1109/ACCESS.2020.3011477

7. Krishnan, R. S., Julie, E. G., Robinson, Y. H., Kumar, R., Son, L. H., Tuan, T. A., & Long, H. V. (2020).
Modified zone based intrusion detection system for security enhancement in mobile ad hoc networks.
Wireless Networks, 26(2), 1275–1289. https://doi.org/10.1007/s11276-019-02151-y

8. Lai, S., Zhao, R., Tang, S., Xia, J., Zhou, F., & Fan, L. (2021). Intelligent secure mobile edge computing for
beyond 5G wireless networks. Physical Communication, 45, 1–8.
https://doi.org/10.1016/j.phycom.2021.101283

9. Liu, X., Zhang, W., Zhou, X., & Zhou, Q. (2021). MECGuard: GRU enhanced attack detection in mobile
edge computing environment. Computer Communications, 172, 1–9.
https://doi.org/10.1016/j.comcom.2021.02.022

10. Nie, L., Wu, Y., Wang, X., Guo, L., Wang, G., Gao, X., & Li, S. (2022). Intrusion detection for secure social
internet of things based on collaborative edge computing: A generative adversarial network-based
approach. IEEE Transactions on Computational Social Systems, 9(1), 134–145.
https://doi.org/10.1109/TCSS.2021.3063538

11. Parsamehr, R., Mantas, G., Rodriguez, J., & Martinez-Ortega, J. F. (2020). IDLP: An efficient intrusion
detection and location-aware prevention mechanism for network coding-enabled mobile small cells.
IEEE Access, 8, 43863–43875. https://doi.org/10.1109/ACCESS.2020.2977428

12. Ramaiah, M., Chandrasekaran, V., Ravi, V., & Kumar, N. (2021). An intrusion detection system using
optimized deep neural network architecture. Transactions on Emerging Telecommunications
Technologies, 32(4), 1–17. https://doi.org/10.1002/ett.4221

13. Ren, K., Zeng, Y., Zhong, Y., Sheng, B., & Zhang, Y. (2023). MAFSIDS: A reinforcement learning-based
intrusion detection model for multi-agent feature selection networks. Journal of Big Data, 10(1), 1–30.
https://doi.org/10.1186/s40537-023-00814-4

14. Ribeiro, J., Saghezchi, F. B., Mantas, G., Rodriguez, J., Shepherd, S. J., & Abd-Alhameed, R. A. (2020).
An Autonomous host-based intrusion detection system for android mobile devices. Mobile Networks and
Applications, 25(1), 164–172. https://doi.org/10.1007/s11036-019-01220-y

15. Schmitt, M. (2023). Securing the digital world: Protecting smart infrastructures and digital industries
with artificial intelligence (AI)-enabled malware and intrusion detection. Journal of Industrial
Information Integration, 36, 1–12. https://doi.org/10.1016/j.jii.2023.100520

16. Sindjoung, M. L. F., Velempini, M., & Djamegni, C. T. (2023). A data security and privacy scheme for user
quality of experience in a Mobile Edge Computing-based network. Array, 19, 1–11.
https://doi.org/10.1016/j.array.2023.100304

17. Singh, A., Chatterjee, K., & Satapathy, S. C. (2022). An edge based hybrid intrusion detection framework
for mobile edge computing. Complex and Intelligent Systems, 8(5), 3719–3746.
https://doi.org/10.1007/s40747-021-00498-4

18. Sun, J. (2022). Certificateless batch authentication scheme and intrusion detection model based on the
mobile edge computing technology NDN-IoT environment. Journal of Function Spaces, 2022, 1–10.
https://doi.org/10.1155/2022/5926792

19. Wang, W., Huang, H., Li, Q., He, F., & Sha, C. (2020). Generalized intrusion detection mechanism for
empowered intruders in wireless sensor networks. IEEE Access, 8, 25170–25183.
https://doi.org/10.1109/ACCESS.2020.2970973

20. Yadav, N., Pande, S., Khamparia, A., & Gupta, D. (2022). Intrusion detection system on IoT with 5G
network using deep learning. Wireless Communications and Mobile Computing, 2022, 1–13.
https://doi.org/10.1155/2022/9304689

https://doi.org/10.1109/ACCESS.2020.3041793
https://doi.org/10.1109/MNET.211.2000526
https://doi.org/10.1186/s13638-021-02016-z
https://doi.org/10.1109/ACCESS.2020.3011477
https://doi.org/10.1007/s11276-019-02151-y
https://doi.org/10.1016/j.phycom.2021.101283
https://doi.org/10.1016/j.comcom.2021.02.022
https://doi.org/10.1109/TCSS.2021.3063538
https://doi.org/10.1109/ACCESS.2020.2977428
https://doi.org/10.1002/ett.4221
https://doi.org/10.1186/s40537-023-00814-4
https://doi.org/10.1007/s11036-019-01220-y
https://doi.org/10.1016/j.jii.2023.100520
https://doi.org/10.1016/j.array.2023.100304
https://doi.org/10.1007/s40747-021-00498-4
https://doi.org/10.1155/2022/5926792
https://doi.org/10.1109/ACCESS.2020.2970973
https://doi.org/10.1155/2022/9304689

