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ARTICLE INFO ABSTRACT 

 Mobile Agent is known as a software component that collects the data from hosts 
in the network. However, security is a major problem in MA. Therefore, IDS is 
used to detect malicious activities in the network. But, none of the works 
validated whether the MA is cloned or real. Therefore, the paper presents an MA-
based IDS framework for network security using SL-GAT and PP-FQCC. Firstly, 
the MA and host are registered with the centralized server; in the meantime, 
UUID is generated for the MA. Afterward, MA is securely localized by using 
CMP-GAO. Then, MA is authorized and the data is secured. At this point, IDS 
checks whether the data is attacked or not. Here, IDS is trained based on pre-
processing, graph construction, and classification. Finally, the classifier classifies 
whether the data are attacked or non-attacked. The results proved that the 
proposed model achieved a high-security level of 98.87%, which outperformed 
prevailing techniques. 
 
Keywords: Intrusion Detection System (IDS), Mobile Agent (MA), Conway-
Maxwell-Poisson-Giant Armadillo Optimization (CMP-GAO), Transposition 
Cipher–Message Authentication Code (TC-MAC), Partial Public key-based-
FourQ Curve Cryptography (PP-FQCC), K-Nearest Neighbors (KNN), Smish 
Logish-Graph Attention Network (SL-GAT), and Universally Unique Identifier 
(UUID). 

 
1. INTRODUCTION 

 
With the rapid development of mobile edge computing, mobile data traffic has increased (Garg et al., 2021). 
So, security is the major concern while sharing data packets through the internet (Lai et al., 2021). Denial of 
Service (DoS) and zero-day exposure attacks are the most common security threats (Cao et al., 2020). So, 
paying attention to security attacks is important to avoid data loss and tampering (Sun, 2022). Therefore, IDS 
is used to detect the anomaly actions in the network (Nie et al., 2022). An IDS is a first-level security system, 
which works on a per-packet basis (Krishnan et al., 2020). 
The existing studies used some anomaly detection methods, such as support vector machines, Gated 
Recurrent Unit (GRU), and hybrid techniques with signature-based schemes to detect intrusions in the 
network. But, these models are prone to overfitting problems (Ramaiah et al., 2021, Liu et al., 2021). Also, 
some authorization schemes, such as fine-grained access control mechanisms and symmetric and asymmetric 
cryptographic algorithms are used to ensure the security of the networks (Sindjoung et al., 2023, Hou et al., 
2020). However, these models are inaccurate in providing network security. Therefore, an efficient model 
called MA-based IDS framework using SL-GAT and PP-FQCC has been proposed to improve network 
security. 
 
1.1 Problem Statement 
Some limitations of the existing techniques are described below, 
 None of the existing works validated whether the MA is cloned or real. 
 (Ren et al., 2023) Existing studies do not concentrate on secure localization processes. 
 (Singh et al., 2022) In existing works, the data prevention process is not performed in IDS. 
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 MA-based IDS generates more false positives and false negatives. 
 
1.2 Objectives 
The key objectives of the proposed model are given below, 
 TC-MAC is utilized to validate the MA. 
 CMP-GAO is introduced to securely relocate the MA. 
 PP-FQCC is suggested to secure the data in the IDS. 
 KNN graph and SL-GAT classifier are used to reduce the false positives and negatives. 
 
The rest of this paper is organized as: section 2 illustrates the related works and their limits, section 3 
summarizes the proposed system, section 4 conveys the results and discussion, and section 5 concludes the 
proposed work with future recommendations. 
 

2. LITERATURE SURVEY 
 
(Ren et al., 2023) established a Multi-Agent Feature Selection IDS (MAFSIDS) for attack detection in 
networks. The GCN (Graph Convolutional Network) was used for extracting deep features from the data. The 
features were extracted accurately using MAFSIDS. However, the edges of computing were not localized, 
which led to attack detection problems during data transfer. 
(Wang et al., 2020) deployed IDS for Empowered Intruders (IDEI) in wireless networks. The mobile nodes 
were tracked using the IDEI method. The mobile service nodes helped in detecting the intrusion. Thus, the 
model obtained better intrusion detection. Yet, the nodes were insufficient, which resulted in improper attack 
detection. 
(Chen et al., 2020) presented federated learning-based IDS for wireless edge networks. Here, the Federated 
Learning-based Attention GRU (FedAGRU) was used for intrusion detection. Hence, the intrusion detection 
was improved accurately. On the contrary, the FedAGRU was affected by poison attacks, thus reducing the 
attack detection rates. 
(Parsamehr et al., 2020) evaluated IDS for Network Coding-enabled (NC) mobile cells. Here, the detection 
was based on homomorphic MAC schemes. The Intrusion Detection and Location-Aware Prevention (IDLP) 
mechanism identified the attacker’s exact location and blocked it to prevent an attack. Hence, the NC mobile 
cell depletion was reduced. But, the data could not be decoded properly, which made the model unsuccessful. 
(Gong et al., 2021) introduced a two-phase algorithm for cyber intrusion detection in edge computing. Here, 
the selected features were classified using the Modified Back-Propagation Neural Network (MBPNN). Hence, 
a higher detection rate was achieved. Yet, the MOGA method could not get enough features, which affected 
the performance of attack detection. 
 

3. PROPOSED MA BASED IDS 
 
In the proposed model, the SL-GAT classifier is used to detect security threats, and the PP-FQCC algorithm is 
used to secure the data. The structural diagram of the proposed system is shown in Figure 1. 
 

 
Figure 1: Structural diagram of the proposed model 
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3.1 Registration 
Initially, the MA and the host are registered with the centralized server. MA details, such as trust value, 

energy, and distance are collected for registration. In the meantime, partial public   and private keys   are 

generated for hosts. The key is generated using the PP-FQCC algorithm. Afterward, UUID is generated for the 

MA. The registered MA ma  and hosts ho  are expressed as, 

 aihoma  ,,,,),( 332211     (1) 

 

Where, ai ,  indicate the total numbers of ma  and ho . 

 
3.2 MA Secure Localization 
Then, the MA is securely localized based on the minimum distance and high trust value of the source and 
destination hosts. Here, the CMP-GAO algorithm is utilized for secure localization. GAO provides suitable 
solutions to optimization problems. But, premature convergence problems occurred due to the random 

position updation. So, CMP is replaced to overcome these issues. Primarily, the population N  of Giant 

Armadillos (GA) is initialized. The N  is considered as the registered MA, which is expressed as, 
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Where, qpn ,  indicates the 
thq  dimension of the problem, pN  is the 

thp  GA, which is the candidate solution, 

T  is the total number of GA, o  is the total number of problem variables, Tp ,,3,2,1   and 

oq ,,3,2,1  , qpR ,  denote random parameters, and qlow  and qup  indicate the lower and upper bound, 

respectively. The fitness function I  is calculated by considering the minimum distance )'min( d  and high 
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)(IBestNbest       (5) 

 

)(IBest is the best fitness value for the best candidate solution bestN . In the exploration phase, the position 

is updated based on the attack of GA towards the termite mounds during hunting. Here, the CMP is replaced 
in the random position updation to make the exploration easier. For each GA, the set of selected Candidate 

Termite Mounds (CTM) iV  is described as, 
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Here, pI indicates the fitness of the 
thp  GA and p  indicates the number of GA. The GA randomly selects 

one of the CTMs for hunting. The updated new position 
new

qpn ,  is formulated as, 
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Where, qprn ,  is the random number with set{1,2} and 
new

pI  is the fitness function of 
new

qpn , . In the exploitation 

phase, the position is changed based on GA digging in termite mounds to feed on termites. The new suitable 

position 
Sp

qpn ,  is defined as, 
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Where, ',,3,2,1 iteriter   is the total number of iterations. This process is continued until the last 

iteration. Finally, the relocated MA L  is expressed as, 

eWhereLLLLL e ,,3,2,1},,,,{ 321       (11) 

 

Where, eL  is the total number of L . 

 
Pseudocode for CMP-GAO 

Input: Registered MA ),( homa   

Output: Relocated MA L  

Begin 

Initialize population N  

While 'iteriter   

For each N  

Compute dimension qpn ,  

Estimate )(IBestNbest   

Update new position 

If p

new

p II   

new

qpn ,  

Else 

pN  

End If 
Update new suitable position 

If p

Sp

p II   

Sp

qpn ,  

Else 

pN  

End If 
End For 
End While 
End 

Next, the relocated MA is authorized, which will be briefly explained in the following section. 
 
3.3 MA Authorization 
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Next, the L are authorized by using TC-MAC. MAC algorithm efficiently prevents the servers and data 

packets from man-in-the-middle attacks. MACs don’t secure the messages against intruders. On the sender 

side, the message G  is converted into a ciphering format using TC. The ciphered text '  is given below, 

)()(' 1 zzz KJFVG     (12) 

Where, zV  and zJ are the left and right-hand parts of the intermediate cipher, respectively and 1zK  denotes 

the key bits. Then, the secret key   is generated by using the  , which is expressed as, 

)(sec    keyret
      (13) 

 

After that, MAC )(U  is created on the sender side. ' and   are given as an input to MAC and is defined as, 

  'U       (14) 

 

Similarly, the created MAC )(E  at the receiver side is checked with )(U  for similarity )( , which is defined 

as, 
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If MA is cloned, then a security alert is sent to the centralized server; otherwise, the data   is secured. 

 
3.4 Data security 

Then, the data   is secured by using the PP-FQCC algorithm. ECC speeds up the key generation, 

encryption, and decryption process. But, the computation is complex due to the negative points in the 
variables. So, the FourQ curve is used to overcome these issues. At the time of data security, the key is fully 

generated. Initially, FourQ curves   are discovered for generating the keys and are defined as, 
 

'''' 4321 baxbxaxx       (16) 

 

Where, 'a  and 'b indicate the horizontal and vertical axis and x , 1x , 3x  and 4x are constants. Next, the keys 

are generated from the FourQ curves. The fully generated public key   is formulated as, 
 

QP *)(        (17) 

Where, P  indicates fully generated private key. Then, the data are encrypted, which is derived as, 

 

QrC 1       (18) 

)(2   rC      (19) 

 

Where, 1C  and 2C  denote the encrypted data and r  defines the random number. Finally, the decryption is 

performed to decrypt the data, which is expressed as, 
 

1))(2( CPC        (20) 

Where,  is the decrypted data. 

 
3.5 IDS 
Here, the IDS checks whether the data is attacked or not. 
 
3.5.1 Dataset 
The IDS takes UNSW_NB15 datasets to train the classifier, which contains the data, such as service, synack, 

smean, sload, and sloss. The data in the dataset 
u  is expressed as, 

 ,,3,2,1],,,,[ 321   uHereu
  (21) 
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Where, 
1  is the first data in 

u . 
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3.5.2 Pre-processing 

Next, the 
u  are pre-processed to improve the quality. Firstly, the duplicate data are eliminated. Then, the 

missing values in 
u  are replaced randomly, which is defined as  . After that, numeralization 


H  is 

performed to convert the string data into numerical values, which are expressed as, 

gwhereHHHHH g ,,2,1)()( 321      (22) 

Then, 

H  is normalized, which converts all the numbers into 0 or 1. The normalized data M  is defined as, 

)min()max(

)min(
)(
















HH

HH
HM     (23) 

Finally, the pre-processed data 
  is determined as, 

ZM Z ,,2,1},,,,{)( 321       (24) 

Where, 
2  is the second 

 . 
 
3.5.3 Graph Construction 

Next, the graph is constructed for the 
 by using KNN graph algorithm. Primarily, the 

  is initialized and 

given as an input in this process. This process decides the number of clusters by grouping them based on the 

protocols. The centroids lB  with the total j number of centroids are selected randomly and are expressed as, 

jlwhereBBBBB jl ,,2,1},,,,{ 321      (25) 

Then, the Euclidean distance D  is calculated, which is defined as, 
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Next, a new centroid   is computed by calculating the average for all data, which is expressed as, 
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Where, 


lA  is the average of data. These steps are continued until the best clusters are found. The total ab

number of constructed graphs is formulated as, 

abwhereab ,,2,1),,,,( 321       (28) 

Here,   denotes the constructed graph. 

 
3.5.4 Classification 
Afterward, the classifier detects whether the data is attacked or not attacked by using SL-GAT. GAT 
superiorly performs in the data described in graphs. But, it adds more weight parameters, so training time is 
increased. So, the SL activation function is added to provide efficient classification. The architectural diagram 
of the proposed classifier is shown in Figure 2. 
 

 
Figure 2: Architectural diagram of SL-GAT 
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Initially, )(  is fed to the embedding layer. The total   number of embedding layers  encoded )(  into 

low dimensional space, which is expressed as, 
 

  ,,3,2,1},,,,{ 321   where   (29) 

 

Then, the output of   is subjected to the SL activation function 
  along with the self-attention 

mechanism. The 
  reduces the training time of the long sequence inputs, which is derived as, 
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Where, f and   represent the linear functions and  indicates the sigmoid function. Then, the attention 

mechanism dC  calculated with weights tW  and SL is equated by, 
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Where, 
'Th
indicates the transpose matrix, ||denotes the concatenation operation, and Yd ,,2,1  , where 

Y is the total number of output values obtained from dC . Afterward, the output of dC  is fed to the output 

layer kO , which is formulated as, 
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Here, Fk ,,2,1   , where F is the total number of kO . Finally, the kO delivers the results, such as 

Attacked )(  or Non-attacked )( . Also, kO classifies the types of attacks, such as reconnaissance, backdoor, 

DoS, and many others. 
 
Pseudo-code for SL-GAT 

Input: Constructed graph )(   

Output: Attacked )(  or Non-attacked )(  

Begin 

Initialize )(   

Set ]1[ it  

While )( maxitit   

For each )(   

Perform    
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Update weight tW  

Estimate SL activation function 

Find 



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End For 
End While 
End 
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The pseudo-code given above describes the process of the SL-GAT classifier. 
 

4. RESULTS AND DISCUSSION 
 
Here, the performance of the proposed model is analyzed and compared with the existing methods. The 
metrics were obtained by working on the PYTHON platform. 
 
4.1 Dataset Description 
The evaluation of the proposed work is done using the UNSW_NB15 dataset. From the total data, 80% data is 
used for training and 20% for testing and is given in Table 1. 
 

Table 1: Dataset Details 

Data UNSW_NB15 

Total 257674 

Normal 93000 

Attacked 164673 

Testing Normal 74400 

Attacked 131738 

Training Normal 18600 

Attacked 32934 
 
4.2 Performance Analysis 
In this section, the performance of the proposed techniques is validated to show the better performance of the 
proposed techniques. 
 

 
Figure 3: Comparative Analysis for TC-MAC 

 
The proposed TC-MAC algorithm was compared with the existing Stream Cipher-MAC (SC-MAC), Hill 
Cipher-MAC (HC-MAC), Vignere Cipher-MAC (VC-MAC), and Caesar Cipher-MAC (CC-MAC) as shown in 
Figure 3. The MA authentication was done based on the sender and receiver host public key. Thus, the MAC 
was created within 1247ms, and the MA verification was done within 1214ms. But, the existing techniques 
verified the MA in an average of 2262ms, which is higher than the proposed techniques. Thus, the TC-MAC 
technique verified the MA more quickly than prevailing models. 
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Table 2: Comparative Analysis for SL-GAT 

Techniques Precision (%) Recall (%) F-Measure (%) 
Proposed SL-GAT 98.7456 99.2659 98.4082 
GAT 96.1208 97.4587 97.4862 
RNN 94.3254 96.2608 95.6324 
DBN 91.3265 93.6324 92.1046 
DNN 88.7045 91.2347 89.6521 

 

 
Figure 4: Graphical Comparison for SL-GAT 

 
The metrics achieved by the proposed and existing classifiers are given in Table 2 and Figure 4. The proposed 
model classified the attack with Precision of 98.7456%, Recall of 99.2659%, F-Measure of 98.4082%, 
Accuracy of 98.5915%, Sensitivity of 99.2054%, Specificity of 97.5609%, True Positive Rate (TPR) of 
99.0737%, and True Negative Rate (TNR) of 97.5609%. The existing GAT, Recurrent Neural Network (RNN), 
Deep Belief Network (DBN), and Deep Neural Network (DNN) obtained lower metrics values than the 
proposed work. The proposed model used the SmishLogish activation function, which more precisely 
classified the attacks than the existing techniques. 
 

Table 3: Comparative Analysis for PP-FQCC 

Methods Encryption Time (ms) Decryption Time (ms) 

Proposed PP-FQCC 968 987 

ECC 1357 1411 

RSA 1784 1823 

ElGamal 2154 2254 

AES 2686 2745 
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Figure 5: Comparison of Security Level 

 
The PP-FQCC method was compared with existing models regarding Encryption time (ET), Decryption Time 
(DT), and Security Level (SL) as given in Table 3 and Figure 5. The proposed model secured the data with ET 
of 968ms, DT of 987ms, and SL of 98.87%. The existing ECC, Rivest–Shamir–Adleman (RSA), ElGamal, and 
Advanced Encryption Standard (AES) obtained SL of 96.83%, 94.43%, 92.74%, and 89.22% and higher ET 
and DT than the proposed technique. The usage of the FourQ curve in ECC made the proposed model secure 
the data superiorly. 
 

 
Figure 6: Performance Analysis for CMP-GAO 

 

 
Figure 7: Comparison regarding Throughput 
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The localization of MA was done using the CMP-GAO technique. Here, the hunting of the GA was done 
regarding the CMP distribution function. Therefore, the MA was localized in a Response Time of 4738ms and 
Throughput of 7305 kbps. As depicted in Figures 6 and 7, the existing optimizers GAO, Osprey Optimization 
Algorithm (OOA), Lyrebird Optimization Algorithm (LOA), and Whale Optimization Algorithm (WOA) 
obtained higher Response Time and lower Throughput than the proposed technique. Thus, the CMP-GAO 
performed better than the existing optimizers. 
 

Table 4: Comparison of Related Works 

Study Method Dataset Accuracy (%) Precision (%) Recall (%) F-Measure (%) 

Proposed 
Work 

SL-GAT UNSW_NB15 98.5915 98.7456 99.2659 98.4082 

(Ribeiro et al., 
2020) 

OneR Real Time Data 97.27 97.79 98.60 98.19 

(Yadav et al., 
2022) 

XGBoost UNSW_NB15 98 97.9 97.5 94.10 

(Ajao & Apeh, 
2023) 

GARL UNSW_NB15 98.1 97 - 98 

(Schmitt, 
2023) 

GBM NSL_KDD 97.78 97.59 94.44 94.37 

(Singh et al., 
2022) 

EHIDF UNSW_NB15 90.25 94.36 97.69 94.35 

 
The comparison of the proposed work with the existing models is given in Table 4. The SL-GAT technique 
classified the attack with a Precision of 98.7456%. But, the existing Extreme Gradient Boosting (XGBoost) 
and Edge-based Hybrid Intrusion Detection Framework (EHIDF) used limited features for classification, 
which obtained an F-Measure of 94.10% and 94.35%. The One Rule (OneR), Genetic Algorithm-Based 
Reinforcement Learning (GARL), and Gradient Boosting Machine (GBM) could not detect the attack in the 
network. Thus, these works obtained lower Precision and Recall values than the proposed classifier. Hence, 
SL-GAT achieved better performance than prevailing classifiers. 
 

5. CONCLUSION 
 
This paper proposed an effective framework for intrusion detection in networks based on Mobile Agents. The 
authenticated MA was localized using the CMP-GAO technique with a Response Time of 4738ms. Next, the 
MA was authorized using TC-MAC, which verified the MA in 1214ms. The data of MA was secured with 
98.87% SL using the PP-FQCC method. Finally, the intrusion in secured data was detected using SL-GAT 
with an Accuracy of 98.5915%. Therefore, it can be concluded that the proposed model effectively secured the 
network based on Mobile Agents. 
 
Future Scope 
Even though the attack on the data transferred through MA was detected as an intrusion, the attack on MA 
was not considered. Hence, in the future, MA attack prevention will be considered for effective data transfer. 
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