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ARTICLE INFO ABSTRACT 

 In today’s world obstructing hardware devices from non-authorized individuals 
has become rigorous particularly during the last few decades because of the 
internationalization of the semiconductor supply chain and widespread network 
connectivity of electronic equipment. In recent times computing devices have 
achieved a lot of success, and it has become a magnetic target surface, where the 
attackers hijack control flow, breach system core of trust, and steal sensitive 
information by fooling automated learners. To counter these unauthorized 
individuals from getting access to this sensitive information, security 
professionals are making Herculean efforts by developing various safeguarding 
tactics and crafting tools to detect device vulnerability and by taking multiple 
measures to make hardware devices more invulnerable. In this article, an overview 
of hardware security and trust from the perspectives of threats, countermeasures, 
and design tools are introduced. By, bringing forward the most up-to-date findings 
in hardware security research and development, the researchers strive to inspire 
hardware designers and electronic automation developers to contemplate the new 
hurdles and possibilities. 
 
Index terms: non-authorized individuals, Design tools, hardware security, 
security countermeasures, security threat, survey, automated learners 

 
I. INTRODUCTION 

 
The challenges posed by the production and sharing of new electronic hardware devices, which are often 
sourced from different vendors and integrated into diverse technological environments with varying security 
levels. This connectivity exposes complex hardware resources to potential attackers, creating opportunities for 
third-party attacks without the need for their physical presence. Consequently, modern computing hardware 
is increasingly vulnerable to a range of security threats. 
 
These threats can occur at various stages of the semiconductor life cycle, from initial specification to fabrication 
and repurposing, leading to unintended design flaws, secondary impacts, and intentional malicious alterations. 
Critical resources, including cryptographic functions, secure architectures, intellectual property, and machine 
learning models, are often targeted. Traditional hardware threats, such as reverse engineering, hardware 
Trojans, and covert side channels, continue to evolve, leveraging remote, cross-layer, and specification-
compatible attack surfaces to bypass security measures. 
 
Security analysts are continuously striving to enhance hardware security protections. This involves creating 
robust hardware security primitives as the first line of defenses, implementing Trojan detection and efficient 
side-channel assurance to ensure the integrity of security building blocks and trusted execution environments. 
Additionally, advancements in artificial intelligence and machine learning have proven valuable in optimizing 
detection tools. 
 
Despite the implementation of multiple protection techniques, security considerations still do not receive 
sufficient attention or priority during the hardware design process. This highlights the ongoing need for robust 
security strategies and design tools to mitigate evolving hardware security threats effectively. The majority of 
vulnerabilities are only revealed after their exploitation by cybercriminals.  Relying too heavily on software 
patches to address hardware flaws has also contributed to the abundance of zero-day exploits available to 
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attackers. Therefore, it is essential to design better tools to enforce security aspects of hardware to guarantee 
trust. Implementing techniques of proactive hardware information flow breaks down those aids in the 
protection of unwanted distribution of information and constant observation of hardware system. For instance, 
accidental hardware malfunctions and possible security breaches can be identified sooner by the advanced 
security-driven hardware design flow. Due to the fact the attacks and countermeasures occur often and is an 
infinite process, it is advisable to be in a parallel level with its latest prototype to continuously be in close 
proximity of the productivity gap of protected hardware blueprint. At the present level of developments in 
hardware design complexity, if the tool chain is unable to get regular updates with the latest prototype for trust 
and security verification processes, security may put an end to Moore’s law before other physical boundaries. 
 
This article thoroughly explores hardware security, focusing on threats, countermeasures, and design tools. It 
examines specialized areas within the field, covering both familiar and novel subjects, while staying attuned to 
emerging trends and technological developments. By consolidating recent progress and knowledge, the paper 
provides a comprehensive overview and sets the stage for future research directions. It highlights the diverse 
nature of hardware security and emphasizes the importance of tailored research efforts and creative solutions 
to tackle evolving threats. 
 
II. HARDWARE SECURITY PROPERTIES 
Hardware security properties are formalized descriptions of persistent issues concerning the security of circuit 
designs [15]. Typically, security threats and attacks cause breaches of security attributes, while security 
countermeasures offer methods for enforcing these properties. The complexities in security measures provide 
valuable constraints for security verification tools. The sections below briefly describe various hardware 
security properties. 
 
A. Segregation 
Segregation is a bidirectional feature and a common security property used in system-on-chips (SoCs), modern 
processors, and cloud environments. It ensures that two hardware components with different security levels 
are prevented from directly communicating with each other. The interaction between secure and non-secure 
environments is tightly controlled. 
 
B. Statistical Security Features 
Statistical security features enhance the accuracy of hardware security design by appraising the impact of 
vulnerabilities or determining the adequacy of security controls. Examples include leakage through side 
channels, unpredictable output of cryptographic functions, and the protective features of security mitigation 
techniques. 
 
C. Durability 
Safety is a primary and essential feature that cannot be directly measured, and catastrophic failures represent 
only a portion of all failures. Durability refers to the ability of a system to deliver intended outputs under normal 
operation, even with minimal fluctuations in the computing environment over a given period. 
 
D. Steady Time 
Breaches of the constant time property alter the timing channel through which unauthorized entities can infer 
private information. Such breaches can result from performance improvements like cache and branch 
predictors and faster methods in mathematical units. The steady time security property requires that hardware 
operations take a consistent amount of time to compute and produce results under various input combinations, 
ensuring that no information about the inputs can be derived from the computation time. 
 
E. Discretion 
Discretion is a fundamental security property that mandates sensitive information should never be obtained 
by monitoring public outputs or memory locations. 
 
F. Integrity 
Integrity is a component of discretion, requiring that a trusted data object should never be replaced by an 
unreliable entity. This type of attack often targets core complex memory locations, such as cryptographic keys, 
program counters, and privilege registers. These attacks typically serve as a precursor to further illicit activities, 
such as hijacking control flow and deceiving machine learning algorithms. 
 
III. THREATS 
A. Architectural and System Threats 
1. Speculative execution threats: Typically, the initial attacks which are Spectre and Meltdown aid in 
caching, out-of-order execution, speculative execution, and other execution efficiency improvements to break 
the quarantine and safety-related policies.  
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Several processors perform out-of-order execution by using branch prediction. Generally, a spectre is one kind 
of weakness that tricks a victim’s process into disclosing its data. Spectre tricks the user’s system because the 
speculative execution of code leaves traces about its execution in the cache which can be acquired by using 
cache SCA i.e., (Similar to meltdown). Spectre manipulates the branch predictor so that it can make a wrong 
move and the code doesn’t get executed in any condition. The code is executed out-of-order because the branch 
predictor is wrong.  
Meltdown is a critical security vulnerability affecting many modern microprocessors allowing uncertified 
processes to analyse data from any address mapped to the current process’s memory space. It exploits a race 
condition within the CPU’s execution pipeline. 
 
2. Cache Breach: Cache breach exploits information leakage through the state of the cache and are highly 
effective at extracting preserved information. As a shared source the cache retains traces of the computation 
performed by processes, particularly the memory addresses they accessed. Cache side-channel attacks are 
powerful techniques often combine with other attacks such as meltdown and spectre, to enhance their 
effectiveness in breaching security [11]. 
 
3. Code Reuse attacks: Code reuse attacks such as, return oriented programming (ROP), exploit existing 
software snippets to execute computation chosen by the attackers. In ROP the attacker sequences existing code 
fragments, known as gadgets to perform malicious activities without injecting new code. 
 
4. Secure Boot attacks: Secure boot process is design to ensure the integrity and authenticity of system 
from the moment its powers on. It begins code loaded from an immutable boot ROM, initializing peripherals, 
configuring security settings, and authenticating boot images and application code, while also sanitizing data 
upon reset. 
Moreover, the process should ensure that the hardware can fully reset all states and only load code from the 
boot ROM upon reset, maintaining the originality and security of the boot process. 
 
5. Firmware breach: Firmware, the low-level software managing hardware interaction, is crucial for the 
security of System-on-Chip (SoC) architecture. Incorrectly configured firmware can lead to severe 
vulnerabilities, including data leaks, unsafe behaviour and critical flaws exploitable by attackers. 
Effective access control to hardware resource further enhances secure computing underscoring the intricate 
and vital role of firmware SoC security. 
 
6. Dynamic Random Access Memory threats:  Dynamic Random-Access Memory (DRAM) is 
vulnerable to significant threats demonstrated by the Coldboot and Rowhammer attacks. Coldboot exploits the 
persistence of DRAM data even after power is removed. 
These attacks underscore the necessity for robust protective measure in DRAM such as error-correcting codes 
(ECC) and enhanced memory isolation techniques, to save guard sensitive data against both physical and 
logical threats. 
 
B. Covert and Side Channels 
Covert and side channels represent significant security concerns in modern computing systems, leveraging 
microarchitectural features intended to enhance performance, such as shared caches and speculative 
execution. Covert channel facilitates information leakage through unconventional communication paths, often 
involving an insider process like a Trojan horse covertly transmitting data to an external spy process by 
manipulating the timing of an event or resource state. Conversely, side channels exploit physical phenomena 
such as variations in supply current event timing or electromagnetic emissions to extract sensitive information 
based on the system’s intrinsic implementation flaws.  
These channels underscore the need for enhanced security measures to mitigate unintentional information 
leakage in both covert and overt scenarios.  
 
1)Timing channel: A timing channel is a type of stored method or component that uses an event processing 
system to display sensitive data. These techniques become important in multiprocessor environments due to 
shared hardware resources. Specifically, by monitoring the timing of certain operations, the attacker can gather 
information about the underlying activities. 
Time channels work by exploiting resource sharing and execution mechanisms in the hardware. When software 
applications share hardware resources, such as cache or memory, differences in access times to these resources 
can cause issues. For example, storage usage in one mode can affect time in another mode, reflecting storage 
usage patterns. 
Certain conditions must be met for the timing channels to take effect. The two processes of the victim and the 
attacker must run on the same processor core for a long time. This is important for cache-based attacks where 
the attacker controls collection. 
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2) Power side-channel attacks: (SCAs) exploit the power consumption patterns of electronic components 
to extract sensitive information. By measuring the power usage of a device during its operation, attackers can 
analyze these power traces to uncover internal data, such as cryptographic keys [12]. As technology nodes 
shrink and power density increases, the success rate of these attacks has improved. 
 
3) Electromagnetic and Photonic Channels: Electromagnetic (EM) and photonic processes pose 
significant safety concerns due to unintended EM radiation emitted by electronic devices. This radiation, while 
a known issue that can interfere with wireless communications and pose a health hazard, can also be used to 
disseminate sensitive information during safety-critical operations. 
 
4) Fault Injection: A fault injection attack is a powerful side-channel attack in which the attacker 
intentionally disrupts the normal functionality of the hardware to force it to reveal sensitive information such 
as cryptographic key bits. These attacks can severely compromise the security of systems running on processors 
by causing errors that use glitches or powerful lasers to exploit the exploits used to control the control of the 
device voltage, clock, or temperature. Studies by Rajput et al [2], as well as detailed studies by Valea et al [1], 
have documented the various security threats and countermeasures related to these testing standards, 
emphasizing the critical importance of security if severe from emphasizing the error of spinning attacks. 
 
C. IP Theft and Counterfeiting Threats 
1) Classical Digital Trojans: Classical digital hardware Trojans (HTs) often use simple but effective 
techniques to enable malicious behavior. Early HT systems often relied on a single trigger signal to activate the 
Trojan when a rare event occurred. For example, the Trust-HUB benchmarks are known for using such simple 
trigger mechanisms, which are more susceptible to switching probability analysis. This vulnerability, while 
effective in some cases, makes it easier to detect these Trojans through careful analysis of signal exchange 
patterns.  
 
2) Exploitation of Don’t Care Conditions: One sophisticated way to create hardware Trojans is to use 
don’t care conditions, which refer to undefined activity in a system. 
Obfuscation is a method of protecting intellectual property by making the design meaningless. In this case, the 
configuration functions underlying incorrect obfuscation keys are not explicitly specified, leaving the IP 
designer free to inject malicious circuitry without realizing it. For example, by adding a bad state to a finite-
state machine (FSM), HTs can use stateless encoding to generate a floating Trojan state. This state is usually 
inaccessible during normal operation but can be enabled by fault attacks, forcing the FSM into the bad state. 
Another approach is to use satisfiability and don't care conditions for HT insertion. This method uses pairs of 
signals that can never be in a particular input combination due to channel connectivity. 
 
3) Trojans-Induced Aging and Performance Degradation: In nanoscale semiconductor devices, 
physical processes such as hot-carrier injection, electromigration, and NBTI cause growth, affecting device 
performance and reliability. Third-party IPs (3PIPs) in system-on-chips (SoCs) increase vulnerability to aging 
attacks, as rogue vendors can introduce modifications to accelerate aging, leading to device failures early. Fast 
growth attacks typically use NBTI stress, where the threshold voltage of PMOS transistors increases over time 
due to trapped charges. This attack highlights the critical importance of robust protection against aging-
induced vulnerabilities in semiconductor devices, especially in the case of third-party IP integration in SoCs. 
 
4) Analog Trojans: Researchers have expanded hardware Trojans (HT) to include analog systems, 
demonstrating the ability to subtly manipulate circuitry systems for malicious purposes. Becker et al. [4] and 
Kumar et al. [5] achieved this by making slight modifications to the design, such as changing the dopant polarity 
or varying the ratio of inputs to transistors to induce short circuits at the dopant level. Another example is the 
A2 Trojan, a small, stealthy analog circuit that incorporates a single capacitor to siphon charge from nearby 
wires. When it fills up completely, it manipulates the victim's flip-flops to do bad things like increasing 
opportunity. 
 
5) Trojan Insertion Through Malicious EDA Tool: The threat posed by hardware Trojans (HTs) stems 
primarily from the unreliability of systems and supply chains. In this case, even Electronic Design Automation 
(EDA) tools can inadvertently facilitate Trojan attacks. Krieg et al. [6] introduced automated HT insertion by 
lightweight modifications to an open-end manufacturing tool. This modified FPGA synthesis front end 
incorporates a main analysis table (LUT) with simulated design behavior that appears normal [14]. 
 
D. Vulnerabilities and Attacks on Deep Learning Networks 
1) Model Extraction Attacks: Model extraction attacks pose a serious threat to the privacy of pre-trained 
deep learning models, which are often considered valuable intellectual property (IP) due to the large 
investments in training data and computational resources required because of the inclusion. Model extraction 
attacks can be broadly classified into two main types: query-based attacks and application-based attacks [13]. 
Extraction Attacks Role-based attacks use side-by-side information that slips during modelling. Methods such 
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as Differential Power Analysis (DPA) and Correlation Power Analysis (CPA) can be used to determine the 
number of parameters in each layer, the values of these parameters, the total number of layers, and the different 
activation functions used.  
 
2) Adversarial Examples: Adversarial models represent a significant weakness in deep learning models, 
which have seen rapid development over the last decade. These models, especially deep neural networks 
(DNNs), excel in learning high-quality features from raw data, enabling them to solve complex object 
recognition problems with incredible and human-independent accuracy they are not slightly involved. The 
sensitivity of DNNs to hostile models was first highlighted by Szegedy et al. [7], who demonstrated that small-
scale refined perturbations combined with image interpolation can mislead a DNN classifier in the theoretical 
phase. 
 
3) Hardware-Oriented Attacks: AI of Things (AIoT) represents a major breakthrough by integrating 
artificial intelligence (AI) into Internet of Things (IoT) systems. Fault injection attacks pose a serious threat to 
edge intelligence. Techniques such as laser injection, glitch disturbance, memory collision, and row hammering 
are used in this attack. While such an attack can cause a denial of service (DoS) by affecting circuit functionality 
in the DNN, it also alerts the system to the presence of an attack. 
Hardware Trojans (HTs) represent another major threat, particularly in connection with DNN integrated 
circuit (IC) design, manufacturing, and outsourcing testing, or when third-party intellectual property (3PIPs) 
are being used with DNN hardware in. HTs can surreptitiously insert triggers and payloads into the activation 
layer or memory controller, resulting in misallocation.  
 
IV. PREVENTIVE MEASURES  
A. Hardware Security Primitives 
True random number generators (TRNGs) and physically unclonable functions (PUFs) are two important 
hardware-intrinsic security primitives.  
1) TRNG: A random number generator (RNG) is a device or software that generates an unpredictable sequence 
of numbers. Traditional methods, such as rolling dice or tossing coins, are insufficient for the speed and size 
required by modern computing systems. Instead, pseudorandom number generators (PRNGs) use algorithms 
or mathematical programs to generate a sequence of random numbers. This sequence, derived from an initial 
seed state, is sufficiently long but ultimately finite. For cryptographic applications, PRNGs must be 
cryptographically secure (CSPRNGs). These CSPRNGs are bound by cryptographic primitives or complex 
mathematical problems designed to pass the "next-bit test". This test ensures that the (k + 1)th bit of a sequence 
cannot be predicted in polynomial time, due to the knowledge of the first k bits. In addition, CSPRNGs must 
be resistant to "state compromise extension" attacks, where an attacker uses knowledge of certain internal 
states to predict future outcomes or reconstruct past ones. Conventional jitter-based TRNGs use a slow jittery 
frequency clock to simulate a fast clock. Using clock jitters from free-running ring oscillators (ROs) as an 
entropy source simplifies the extractor design but requires additional power-hungry clock generators to ensure 
adequate jitter conversion. Yang et al. [8] proposed a TRNG resistant to structural changes by using oscillation 
collapse in a double-layered RO. To ensure robustness against configuration variations, 32 stages with eight 
selectable inverters per stage are used to provide tuning space. 
 
 
2) PUF as Provenance Proof: PUF (Physically Unclonable Function) takes advantage of variations in 
manufacturing processes to create unique and unpredictable machine fingerprints. In the early stages of 
development, the reproducibility of PUF responses under different conditions presented a significant 
challenge, hindering widespread technical adoption. To address this, various techniques such as the number of 
votes, fuzzy extractor (FE), and reverse FE (RFE) have been used. Most voters choose the most difficult answer 
by repeating the same challenge, increasing confidence in the delay. FE enhances noise tolerance and response 
uniformity through the use of error correction codes (ECC) and hash functions. Currently, PUFs have gained 
traction in the industry, with companies such as Xilinx, NXP Semiconductor, and Qualcomm incorporating 
them into their products. 
 
1) User-Device PUF:  Traditional methods of deployment and device authentication typically involve a series 
of authentication schemes, often requiring extensive message exchange. However, the transmission of sensitive 
certificates presents security risks, especially due to the vulnerability of encryption keys stored in end devices 
to Non-Volatile Memory (NVM) key retrieval attacks. In a departure from this conventional approach, the 
concept of integrated automation and device (UD) Physical Unclonable Functions (PUF) was introduced. This 
new approach aims to distinguish between users and devices using raw biometric information, such as touch 
screen pressure or voice activation, with silicon sensor variations added to the.  
 
2) Data-Device PUF: PUF-supported data-machine authentication schemes address the limitations of 
existing data and machine-free authentication schemes in digital forensics, especially those related to digital 
images and videos, which are highly important information and art but also vulnerable to fraud. These 
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algorithms aim to address two main issues: image distortion detection and camera recognition. Methods for 
image modification detection include image watermarking, digital image forensics, and mental image hashing, 
with the latter particularly effective due to its sensitivity to content-specific modifications and robustness for 
conservation management purposes.  
 
3) Event-driven PUF: Existing PUFs, such as the CMOS image sensor PUF, typically operate based on 
server-provided challenges. However, since these complications are not associated with the sensors, controlling 
the frequency of authentication becomes a challenge, resulting in an unnecessary or insufficient safety marker. 
Unlike traditional sensors, the DVS responds only to temporal voltage fluctuations, recording asynchronous 
address events easily with accurate timing information, and with low latency, higher dynamic range, and 
significant data size reduction. Using these features, an event-oriented PUF scheme was developed adding only 
three transistors per DVS pixel to deal with the entropy from fabrication process variability. This event-driven 
PUF provides a discrete response triggered by locally detected asynchronous processed events, avoiding 
interference from the simultaneous firing of other address events. 
 
B. System and Architectural Protection Techniques 
Shared resources are inevitable in computer systems because they improve performance by allowing multiple 
software systems to use shared memory, datapaths, accelerators, monitors, sensors, and I/O devices. Similarly, 
hardware IP cores require shared access to on-chip interconnects and memories. However, these shared 
resources pose significant security challenges, primarily due to the risk of information leakage when processing 
sensitive data. The cache side channel is a prime example of this vulnerability, as it has been exploited several 
times for malicious purposes. 
 
1) Cache Side-Channel Mitigations: Cache side channel mitigations aim to prevent information leaks by 
separating safe and unsafe paths to the cache. One important approach is cache partitioning, which requires 
partitioning the cache to avoid conflicts between data sets. Cache partitioning methods include static locking 
(PLCache), dynamic locking, page coloring, and optional cache flushing. Static locking first assigns specific 
cache lines to certain processes, while dynamic locking resolves these assignments based on runtime needs.  
 
2) Control Flow Integrity: Control Flow Integrity (CFI) is an important security measure that prevents 
reusable attacks by ensuring that a program adheres to its intended control flow during execution. It can be 
implemented through software or hardware, each with distinct advantages. Software-based CFI is flexible and 
widely used, involving runtime checks and validations in the software. In contrast, hardware-based CFI, 
although infrequent due to the need for extensive microarchitectural flexibility, provides strong security with 
minimal operational costs through trusted hardware monitors adding to the instruction pipeline or processor 
debugging resources.  
 
3) Trusted Execution Environment:  The most common way to achieve software isolation is to use a 
Trusted Execution Environment (TEE), which relies on hardware devices to enforce isolation properties. These 
features typically ensure that the vulnerable computer has resources dedicated and reserved for other system 
members. TEEs are used differently, and each has its own way of ensuring safety. For example, Intel’s Software 
Guard Extensions (SGX)  use enclaves—protected objects containing rules and data for security-related 
computing. SGX achieves isolation by assigning a specific memory location to trusted computers and protecting 
this memory from other components including the kernel, hypervisor, and Direct Memory Access (DMA). 
Similarly, ARM TrustZone divides the system into two parts: a secure world for sensitive accounting and a 
normal world for routine operations. 
 
C. Side-Channel Protection Techniques 
1) Timing-Channel Countermeasures: Existing countermeasures against Side-Channel Attacks (SCA) 
encompass a broad range of software- and hardware-based strategies, aimed at addressing vulnerabilities at 
various stages of system development. These countermeasures focus not only on potential run-time attacks but 
also involve early assessments at the design stage to assess the vulnerability of such risks. Alternatively, bit 
slicing techniques have been explored to use time constant AES cores while improving overall performance. 
Compiler-based countermeasures represent an alternative defense mechanism, aimed at dealing with timing 
processes by introducing noise or randomization in software implementation to hide leakage-related timing.  
 
2) Fault Attack Countermeasures: Over the years, several countermeasures have emerged to protect 
digital systems from terror attacks, broadly divided into infectious and detection-based methods. Detection-
based countermeasures involve augmenting the design with detection circuitry such as parity or redundant 
copies to detect the presence of faults. Parity-based circuits and redundancy techniques have been extensively 
explored in various fields. Methods such as diffusion-based methods, which involve swapping redundant and 
original outputs, or using fixed constant matrices to swap output data serve this purpose. However, the main 
limitation of existing methods is the manual identification of simple fault locations by mechanical engineers, 
causing difficulties, especially in large-scale systems.  
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3) Power Side-Channel Countermeasures: Power side-channel analysis (SCA) countermeasures include 
algorithmic, physical, and system-level approaches. Algorithmic countermeasures involve introducing 
additional operations to mask or distribute sensitive computation, offering provable security benefits. Physical 
countermeasures rely on measurements to validate device protection, addressing side-channel leakage 
measurement challenges through techniques such as custom gates that consume power independently of 
switching. System-level countermeasures leverage the device's power supply to normalize or randomize overall 
power consumption. While algorithmic and system-level approaches require additional circuitry, physical 
countermeasures use custom logic design methods. System-level countermeasures introduce noise into the 
power supply to reduce the signal-to-noise ratio in side-channel leakage. However, the specialized circuitry 
required by these methods can significantly affect design area, power, and performance. 
 
4) EM Side-Channel Countermeasure: Countermeasures against Electromagnetic (EM) side-channel 
attacks work on both the hardware and software fronts, each targeting different vulnerabilities. On the software 
side, techniques such as execution sequence randomization and randomization of Look-Up Tables (LUTs) serve 
to destroy predictable patterns in EM dumps, making it harder for attackers to extract intelligence needs out 
of it. In particular, a couple of instruction sequences can reveal unique features in EM signatures, which can be 
used to identify critical safety issues. By sequencing instructions, these distinctive characteristics can be 
masked, increasing security. A key to mitigating the weaknesses of the EM side-channel lies in the evaluation 
process for hardware systems. By systematically scanning systems for potential EM vulnerabilities, it becomes 
possible to identify them earlier, enabling the integration of system-time mitigation strategies.  
 
D. IP Protection Techniques 
1) Hardware Steganography: IP watermarking, although commonly used to protect intellectual property 
(IP) in hardware design, faces significant limitations related to optimizing design-based signatures to maximize 
robustness cost-effectively which is more than enough. In contrast, hardware steganography appears as a 
promising alternative for several reasons. First, hardware steganography offers the ability to seamlessly resolve 
ownership disputes and detect pirates, providing a more flexible approach compared to watermarks. Second, 
the secret stego-based hardware constraints are derived from the entropy threshold parameter, simplifying the 
process and reducing design overhead.  
In a recent study, a vendor signature-free entropy-based hardware steganography method has been proposed 
to encrypt DSP cores, using an alternative method. The method involves inputting private information on the 
register allocation phase of High-Level Synthesis (HLS) through the Code Independence Graph (CIG) 
framework. Stego constraints are caused by edges between two nodes with the same colors, which simplifies 
the embedding process.  
 
2) Logic Obfuscation: Logic obfuscation is an important technique for protecting hardware Intellectual 
Property (IP) from unauthorized access and reverse engineering. Common methods of logic obfuscation 
include XOR/XNOR and MUX-based logic locking, which change the behaviour of the internal nodes or the 
information that goes into the hardware. Another approach is to introduce programmable features to hide part 
of the logic until later programming steps. Despite these efforts, however, the mechanisms of logic confusion 
are not immune to sophisticated attacks. One such attack is the Functional Oracle-Guided SAT attack, which 
also looks for input patterns that can distinguish between valid and invalid obfuscation keys. To combat this, 
anti-SAT logic locking techniques have been developed.  
 
3) Hardware Watermarking: Hardware watermarking is an important technique used to protect 
intellectual property (IP) from various threats such as piracy, counterfeiting, cloning, and false claims of 
ownership. It can be applied at different stages of the design process, including the electronic system level 
(ESL), high-level synthesis (HLS), or logic synthesis level. For example, ESL or HLS-based hardware 
watermarking involves adding the author's signature to the design during the pre-synthesis phase. In one 
notable example, the author's signature is binary encoded and embedded as additional design and timing 
constraints. These constraints are integrated into the design as binary bitstreams of ASCII characters.  
 
E. Hardware Trojan Detection and Prevention Techniques 
1) 3PIP Trojan Detection: Most hardware Trojan (HT) detection methods rely on Trojan benchmarks to 
assess effectiveness. Identifying unknown HTs in third-party intellectual property (3PIP) is particularly 
challenging due to the lack of detailed information about the Trojan’s usage. Several factors complicate this 
assessment process: functional test coverage, the location of potential change analyzes, and noise caused by 
design changes.  
 
2) Runtime Monitoring Techniques: Due to the NP-completeness of testing problems, such as 
controllability, observability, and automatic test pattern generation (ATPG), it is impossible to guarantee 
removal of hardware Trojans (HT) is completely gone before a device is used. Consequently, it is useful to use 
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runtime monitoring techniques to detect and prevent HT attacks in security-critical systems. These methods 
may include vital sign monitoring, dynamic power management, or electromagnetic (EM) radiation.  
 
3) Design-for-Trust (DFS) Techniques: Design-for-Security (DFS) techniques add dedicated logic to aid 
in hardware Trojan (HT) detection. Some techniques incorporate dummy flip-flops and test points to provide 
more controllability and visibility of internal nodes, thus speeding up the process of activating Trojans. Another 
approach is to install circuit infrastructure such as ring oscillators (ROs) and current sensors that aid in 
production screening and on-site monitoring of all HT-infected chips. This system also supports side-channel 
analysis (SCA)-based HT detection.  
 
4) HT Prevention Techniques: Hardware Trojan (HT) prevention methods are designed to make HT 
installation extremely difficult or, at best, impossible. The three most common strategies for preventing HT 
interference are rationalization, decoupling, and scheduling.  
Logic Obfuscation: Originally designed for intellectual property (IP) protection, logic obfuscation can also 
be used to prevent HT from being inserted. This method locks into the operation of the circuit a key other than 
that of the untrusted foundry. Without this key, the circuit remains locked, making it difficult for an adversary 
to successfully inject a Trojan.  
Split Manufacturing: This method involves splitting the manufacturing process into two parts: the front end 
of the line (FEOL) and the back end of the line (BEOL). The FEOL part is done by a trusted agency, while the 
BEOL part is handled by an untrusted agency. Since the unreliable foundry lacks general design information, 
especially the BEOL part, the installation of a functional HT becomes more difficult.  
 
5) Presilicon Countermeasures: Presilicon hardware Trojan (HT) detection methods are designed to 
detect HTs in the initial configuration. These methods include switching probability analysis, structural 
checking, and security verification. HT detection methods based on configuration analysis focus on extracting 
specific configuration features related to HT systems, such as gate type, number of gates, and communication 
systems. Detection is done using techniques such as pattern matching, which involves scoring algorithms to 
match these objects with the circuit structures being tested to detect Trojan circuitry. 
 
6) Postsilicon Countermeasure: Presilicon hardware Trojan (HT) detection methods aim to detect 
malicious modifications early in the design phase, while postsilicon detection looks for such modifications after 
chip manufacture. A common postsilicon approach is destructive reverse engineering (RE), which involves 
depackaging and delayering integrated circuits (ICs) to extract the circuit structure from layout diagrams. 
Although effective, this method is costly, time-consuming, and subject to failure if the HT is confined to only a 
few chips.  
 
F. ML-Assisted Solutions 
1) ML for Detection: Machine learning (ML) techniques are increasingly being used to detect integrated 
circuit (IC) counterfeits and hardware Trojans (HTs), which pose a serious threat to IC facilities. Traditional 
analytical methods for identifying these threats can be too time-consuming or ineffective. To address this, ML 
models automate the analysis process by analyzing and classifying parametric measurements collected from 
on-chip sensors. For example, support vector machines (SVMs) can be used to detect recycled ICs by detecting 
anomalies in these measurements. SVMs are also effective for real-time HT detection, providing fast and 
proactive responses to potential threats. Besides SVMs, other ML models such as random forests and 
multilayer perceptrons (MLPs) have been used to combat microarchitectural side-channel attacks (SCAs).  
 
2) ML for Robust Architecture Design:  Highly robust systems are set to stay ahead of evolving security 
threats. Researchers have explored new ways to combine machine learning (ML) techniques with unique 
system characteristics to enhance security. For example, Yang et al [9]. exploited the obsolescence effect of the 
memristor to design a secure neuromorphic computer system, using the availability of memristors to enhance 
security measures. Similarly, Shan et al. introduced ML-assisted compensatory capabilities aimed at improving 
resilience against flanking attack (SCA).  
 
G. Countermeasures Against DNN Attacks 
Most countermeasures against anti-DNN attacks can be divided into proactive and reactive categories. The 
former aims to improve model robustness while the latter aims to detect adversarial inputs. 
 
1) Reactive Measures: Reactive methods for combating adversary attacks on deep neural networks (DNNs) 
provide a proactive method of defenses by focusing on detecting adversary inputs and taking appropriate 
actions on. These methods derive from passive regularization techniques, which modify model parameters to 
improve robustness without directly addressing the presence of adversarial perturbations. Instead, tactics aim 
to detect and respond to enemy input in real time. One common methodological component is Sample 
Statistics, which uses statistical algorithms derived from DNN applications to distinguish between natural and 
adversary inputs.  
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Furthermore, Xu et al. [3] propose a method to determine the quality of inputs by comparing the classification 
results of initial and squeezed inputs with a predetermined threshold. This approach aims to minimize 
adversary abuse in high-dimensional feature spaces by distinguishing between benign and adversarial inputs 
based on their classification results. 
 
2) Proactive Measures: Measures taken to counter adversary attacks are commonly implemented on the 
internet and can be divided into three main approaches. Adversarial training involves retraining the model by 
adding off-the-shelf adversarial examples to the original training dataset. While effective, this approach is 
hindered by the cost of creating a bad copy and by the assumption that the defender knows the attacker’s route. 
This method controls the Lipschitz constant of the network during quantization, effectively protecting neural 
networks from adversarial attacks while preserving hardware efficiency for small bitwidth data. All these 
proactive measures help strengthen the resilience of DNN models against adversary threats. 
 
V. DIFFERENT HARDWARE SECURITY TOOLS 
A) Security-Centric Hardware Design Tools:  
Takarabt et al. propose a presilicon analytical method and tool to enable safety verification along with 
operational verification. This tool identifies vulnerabilities and identifies specific code lines where 
vulnerabilities lie, providing additional attributes such as severity. Recent developments also include security-
driven metrics, models, and Computer-Aided Design (CAD) flows that integrate logic encryption, split 
manufacturing, and camouflaging to enhance secure hardware design. Knechtel et al [10]. provides a 
comprehensive survey of the role of Electronic Design Automation (EDA) in hardware security, highlighting 
the challenges of efficiently assembling security considerations and constraints at different levels of 
abstraction, modeling and testing hardware security metrics, and general integration of safety 
countermeasures to avoid unintended side effects.  
 
B. Security Verification Tools 
The researchers have summarized a few projects from the hardware side and also present some recent 
developments. 
 
1) Academia Tools: One of the first hardware security verification tools developed by the gate-level 
information flow tracking (GLIFT) project laid the foundation for hardware information flow tracking (IFT). 
GLIFT established the basic concepts of IFT by formalizing tracking logic and complexity theories. It has been 
used to demonstrate tight isolation in computer systems, detect time channels, and detect Hardware Trojans 
(HTs). As the hardware design evolved, high-level IFT techniques such as register-transfer-level IFT (RTLIFT) 
emerged to address verification performance challenges at the gate level. GLIFT, RTLIFT, Clepsydra, and 
VeriSketch are secure hardware design tools targeted at RTL Verilog designs. RTLIFT has shown significant 
improvement in verification performance compared to GLIFT. Clepsydra focuses on time-only and full-time 
property authentication, while VeriSketch integrates hardware policies that conform to desired security 
properties such as confidentiality, integrity, and consistency.  
 
2) Commercial Tools: Many EDA and hardware security companies have introduced a variety of secure 
hardware design tools. Mentor Graphics SecureCheck is a secure format authentication tool built on top of the 
Questa Formal authentication engine. It uses assertion-based formal verification to establish privacy and 
integrity properties, and identifies dangerous paths that are vulnerable to security breaches. Tortuga Logic 
provides Prospect, a hardware security formal verification tool that uses GLIFT to generate logic for 
information flow tracking across circuits. This logic is used for design-time verification without providing 
additional circuitry. Synopsys emphasizes reliability and functional safety certification. CustomSim provides 
tools for device-level and network reliability analysis, covering aspects such as infrared radiation, current 
density, electromigration, and device aging.  
 
VI. POTENTIAL RESEARCH DIRECTIONS 
A. IoT and Cyber–Physical Security 
The importance of ensuring security in IoT and CPS is growing rapidly for several reasons. First, these systems 
interact directly with the physical world, making any security vulnerability a potential security threat. Second, 
they are typically developed and implemented under severe cost and time constraints, which limit a 
comprehensive security system and authentication system.  
 
B. Security-Driven EDA 
The current state-of-the-art EDA streams prioritize functional discipline and performance within specified 
budgets as key design constraints. However, there is increasing recognition of the importance of incorporating 
security considerations into the hardware design process. This represents a promising but challenging research 
direction for both the hardware security and EDA communities.  
C. System and Architecture Security 
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System designers are constantly trying to balance performance, energy consumption, and community in 
hardware design. Nowadays, with the increasing importance of security, it has become necessary to think about 
security as an innovation for effective implementation. However, quantifying "safety" poses significant 
challenges in hardware design. Security metrics play an important role in the vulnerability assessment, threat 
mitigation, and security certification process. Ideally, an effective security metric should provide an accurate 
assessment of the severity of the threat. Because security includes multiple threat models, no single metric can 
adequately cover all aspects.  
 
D. ML for Hardware Security and Security of ML 
Machine learning (ML) models have the dual ability to initiate or defend against attacks on hardware 
companies. Current ML-assisted countermeasures are mainly based on simple models such as Support Vector 
Machines (SVMs), which may be due to the size of the problem and the limited availability of training data. 
However, as attacks progress, sophisticated ML models such as Deep Neural Networks (DNNs) may emerge 
due to their skills in data processing, and large amounts of training data will be required. Thus, unsupervised 
learning can be a solution, as labeled articles are generally more valuable than unlabeled articles. Furthermore, 
it is important to direct ML-enabled methods towards robust architecture design rather than mere anomaly 
detection, as the latter is often too late to prevent damage.  

 
VII. CONCLUSION 

 
Hardware security is a complex and multifaceted field that spans multiple abstractions in the computer systems 
stack. Because of its broad and interdisciplinary nature, it is impractical to fully cover all aspects in a single 
document. In this article, we have focused on selected subfields of hardware security and discussed recent 
advances in them. In particular, we have explored attacks and countermeasures on security systems, IP 
components, and Deep Neural Network (DNN) models, as well as the design and implementation of hardware-
intrinsic security primitives. In addition, we have discussed recent developments in security-driven hardware 
design tools. The landscape of hardware attacks and countermeasures is constantly evolving, often changing 
with major changes in processor architectures and computing technologies. This complex interplay between 
attack and defense in hardware security is expected to continue for the foreseeable future. Our goal in this 
review is to enable hardware designers and tool manufacturers to understand significant security gaps that 
cannot be adequately addressed by traditional hardware design and authentication methods. By doing so, we 
hope to stimulate further research and innovation in the field to strengthen the security of hardware systems. 
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