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ARTICLE INFO ABSTRACT 

 The blossoming development of connected vehicles and the prolific infusion 
of artificial intelligence, machine learning, and deep learning computation 
mechanisms in-car electronics are contributing to a modern integrated, and 
complex vehicle environment, where an increasing number of vehicle 
components require an electric power supply to perform their specific role and 
function. The electric power demand growth is weighted in watts, where even 
the simple light bulb is no longer only a lamp but an electronic part of the 
vehicle. This increase in electronic vehicle parts has led to an increased 
demand for batteries/graphite power cells technological evolution, with a 
concern towards reduced environmental footprint but also towards innovative 
manufacturing processes to support the exponential increase in battery 
numbers. Nonetheless, the thermal/electrical market reality has imposed 
several limitations on batteries, especially in usage scenarios that demand 
high repetition and/or are adapted to very specific thermal requirements.The 
thermal capabilities of batteries are always a key point that drives efficiency, 
effectiveness, and relevant performance indexes. A battery thermal switch will 
have a major impact on battery thermal comfort and long-term health when 
cooling and heating the battery. Smart charging can help to expose and 
enhance battery performance results, relying on different calculations for 
battery heating and cooling. The simultaneous ability to control the thermal 
rearrangement of energy in the battery, improving the power performance 
during charge and/or discharge, becomes increasingly important. Both the 
small and large-scale systems with on-board batteries can benefit from this 
knowledge and management, leading to extra energy savings and contributing 
to the paradigm of energy and power efficiency. Converging computing 
architecture with smart battery charging leverages and exposes the preferably 
coexisting power management and power protection considerations. 
 
Keywords: AI Solutions for Efficient Battery Power Management , Industry 
4.0, Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning 
(ML), Smart Manufacturing (SM),Computer Science, Data Science,Vehicle, 
Vehicle Reliability 

 
1. Introduction 

 
The increasing deployment of fleet and electric vehicles makes the characterization and modeling of their power 
demand using dedicated approaches more and more urgent. Making ad-hoc and electric vehicles charging even 
smarter, more efficient, and aligned with power grid resource capabilities will dramatically change the 
interaction and relationship between energy and transportation. The expected benefits include remarkable 
achievements in reduced costs and investment in grid infrastructure, improved waste of renewable energy 
resources, and downsized negative consequences on electric system stability. For these reasons, battery-
powered vehicles should be managed more intelligently, to reduce consumption costs, collectively reduce the 
safety risks associated with high demand, reduce the impact on power grids, and reduce emissions generated 
by the power and consumption sectors. In a wider perspective, they actively participate in the transition toward 
intelligent power systems, or smart grids.This chapter deals with battery management system design and 
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onboard charger control for the efficient charging of advanced lithium-ion cells employed in automotive 
applications. When charging partial or fully discharged batteries, the task is ensuring cell balance at the defined 
state of charge (SOC) values. The chapter suggests an overall methodology that combines the estimation of 
capacity limits and cell performance tracking, AI solutions for the battery safety and reliability and charging 
control of the automotive battery systems. Of course, the application of AI models to safety measures and 
charger control also has different specific impacts in terms of reliability, hardware requirements, and training 
of machine learning algorithms, which will be highlighted here and, whenever possible, analyzed and discussed. 
 

 
Fig :1: EVaaS system architecture 

 
1.1. Background and Significance 
Automotive as well as industrial applications have experienced significant development toward electrification. 
Strenuous development in batteries, especially towards high energy-density variants, has permitted maximum 
reliance upon energy storage solutions. Electric vehicles, unlike their traditional combustion counterparts, 
suffer from a drawback termed 'range anxiety'. This anxiety is rooted in the practicality of recharging 
infrastructure and duration. Current research in this field seems to be inclined more towards increasing battery 
longevity or accurate state of charge, rather than enhancing charge cycles. The duration of charging an energy 
storage system is primarily proportional to the charge acceptance capacity. The future dispute is about 
developing a grid-friendly energy storage system that can replace the current mechanism that mainly consists 
of external combustion generators and suffers from high penalty charges for quick and large amounts of 
charge.Making energy storage smarter implies reforming the way it operates not only for a better life but also 
for quicker response. Utilizing the internal second-by-second electrical response during a charging event is an 
advanced conformist way and has a high potential to economically replace low-efficiency carbon and nuclear-
based peak and contingency backup systems. Smart charging using RL, LSTM, and mixed strategies reward 
maximization through policy development, layering, and predictive charge duration improvement, is the state 
objective. A particular attempt to use RL and LSTM reveals shortcomings of exhaustive search strategies, which 
require maintaining and searching a lookup table. Inconsistency of the vehicle route, topography, and user 
habit can limit the applicability of accurate models. Utilization of pre-trained machine learning models offers 
a short command runtime suitable for optimum charge regulation and management. 
 
1.2. Research Objectives 
This dissertation focuses on the development of an AI-based DC fast-charging station design to achieve 
significant improvement in the capacity, lifetime, and efficiency of the energy stored in Li-ion battery modules 
employed in automotive applications. The station comprises three main sub-systems that enable intelligent 
control and supervision of the energy processes during the fast charge and discharge of electric vehicles. These 
subsystems are (a) The BMS-based DMC algorithm (Battery Management System - Direct Model Control) that 
accurately adjusts the charging and discharging currents of Li-ion batteries, guaranteeing that constraints and 
balancing activities are respected; (b) The bi-directional SPS supply/restore interface with a capacitive energy 
buffer configured as a dual-cell active balanced bidirectional DC-DC converter that not only interfaces the Li-
ion batteries to the electrical grid but also, thanks to the high number of cells employed (3.2 kW - 400 
capacitors), supports the recovery of partial or short outages of the AC power to enhance grid reliability, with 
guaranteed continuity of service using reduced-size energy buffers in the external deep converter. (c) The FBR 
unit performs a selective recharge technique by monitoring basic customer user requests using an intelligent 
algorithm based on machine learning techniques or user feedback. 
 

2. State of the Art in Battery Power Management 
 
The state of the art about battery power management for electric or hybrid vehicles is often referred to as a 
system commonly called Battery Management System (BMS), whose purpose is to manage the charging and 
discharging of the individual cells in the battery pack. During the operation of the pack and over time, the cells 
deteriorate, causing an imbalance that can become an endurance or even a safety issue. Battery Management 
Systems aim to each cell, extending the battery's lifespan and preventing adverse events.Ideally, a Battery 
Management System not only ensures the battery's safety and reliability but also supports the extension of its 
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lifespan, the enhancement of its charge-discharge capabilities, and the optimization of its returned energy. 
State of Charge Estimation, State of Health estimation, and battery modeling are possible functionalities that 
make the BMS a fundamental part of a smart charging ecosystem. Smart Charging technologies aim to support 
not just a single electric vehicle or hybrid vehicle, but the entire set of vehicles currently connected to the power 
stations and those expected to connect shortly. The ability to balance many conflicting goals and constraints, 
including but not limited to the needs of all the vehicles to be charged, ultimately requires the use of AI and 
Automatic Control methodologies. The integration of Smart Charging functionalities with the BMS can add 
additional features capable of improving the performance, safety, and life of the pack. 
 

 
Fig :2: (a) A schematic of the RL-HCPV concept. (b) DL and RL in RL-HCPV 

 
2.1. Traditional Charging Methods 
In traditional charging methods, mainly two charging techniques are used: constant current charging (CCC) 
and constant voltage charging (CVC). In the constant current charging method, a constant and controllable 
current source is used to charge a battery at a constant rate. Control switches are not used to limit the current 
flow when charging the battery, even at the maximum defined capacity. This can lead to overcharging and 
reduced battery longevity.In the constant voltage charging method, a fixed voltage source is used to charge the 
battery. As the charging process progresses, the current flow is dropped to zero. However, the CCS charging 
method does not drop the current to zero.Some advanced charging algorithms, such as pzr and lps, have been 
proposed by researchers to mitigate the impacts caused by traditional algorithms. While these algorithms can 
achieve fast charging and discharge rates, they can also lead to sudden degradation of batteries, reduced 
capacity and power fade, and long-term cycle life issues. These issues are mainly caused by the generation of 
gas bubbles on battery electrodes and electrolytes during the charging process, especially when fast charging 
techniques are used.Therefore, optimal management parameters for charging batteries are crucial in extending 
their life expectancy and ensuring safety in both stationary and electric automotive applications. These factors 
indicate the need for developing a smart charging solution that can improve charging efficiency without 
degrading the batteries. Real-time monitoring and control of battery chargers will play an effective role in 
achieving proper charging. 
 
2.2. Emergence of AI Solutions 
The integration of deep learning and consensus-based learning in the design of spatio-temporal, hierarchical 
decision models is relatively recent in the development timeline of automotive power control. Literature on the 
application of deep learning is currently limited to system-on-chip with embedded non-real-time AI-based 
perception, cognitive reasoning, and decision engines, which lack the real-time AI feedback loops that map to 
battery state-of-charge, state-of-function, and state-of-health profiles. A bottleneck of performance of 
intelligent AE specific to intelligent battery management has been the lack of publicly available databases that 
link the environmental and user behaviors of EVs and PHEVs to the AE and battery performance profiles. The 
research community is currently concentrating on Gb/sec mixed AI hardware that processes data at ultra-
speed, and intentional artificial intelligent clouds that balance the Gigasoft AI loads to attain the Gigahertz soft 
micros that access the Gigabytes AI knowledge repositories to compute at ultra-high speed. The development 
of chipsets for small-scale, cyber-physical batteries-AE to feed intelligent smart energy grids remains an open 
research problem.The advancement of deep learning and consensus-based learning in automotive power 
control represents a recent development aimed at creating spatio-temporal hierarchical decision models. 
Current literature primarily focuses on system-on-chip architectures embedded with non-real-time AI for 
perception, cognitive reasoning, and decision-making, which lack real-time feedback loops crucial for mapping 
battery state-of-charge, state-of-function, and state-of-health profiles. 
A significant challenge in developing intelligent automotive electronics (AE) specific to battery management is 
the scarcity of publicly available databases linking environmental and user behaviors of electric and plug-in 
hybrid vehicles (EVs and PHEVs) to AE and battery performance profiles. To address this gap, the research 
community is turning its attention to high-speed AI hardware capable of processing data at gigabit per second 
rates, supported by intentional artificial intelligent clouds that distribute computational loads efficiently across 
gigahertz soft microprocessors. These advancements aim to access and utilize gigabytes of AI knowledge 
repositories for ultra-fast computations. 
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Despite these strides, the development of chipsets tailored for small-scale cyber-physical batteries and their 
integration into intelligent smart energy grids remains a critical research challenge. Innovations in this area 
hold promise for enhancing the efficiency, reliability, and integration of battery-powered systems into future 
smart grid architectures. 
 

3. AI Techniques for Smart Charging 
 
Choosing a good time to charge in the presence of flexible price signals depends on a large number of factors, 
including the state of charge the vehicle is currently at, the trip distance distribution for the remainder of the 
time the vehicle is parked, the future forecasted price signal, charging station availability or utilization, and the 
cost or inconvenience associated with charging far from parking. An intelligent recommendation system can 
benefit the vehicle driver, the power grid operator, and the electric vehicle fleet operator. There are a variety of 
factors that affect how good the time a vehicle should start charging is: the baseline state-of-charge of the car, 
the trip distance distribution until the car is done parking, future forecasts of the real-time electricity price 
signals, and the number of cars already planned to charge or charge at a given time. The trip distance 
distribution consists of expected driving events until the tenant is done parking. Since the future may be 
assumed.A particular type of rule-based system that has found success in several commercial-grade automotive 
applications is the fuzzy logic engine. Fundamentally, this system takes a continuous numerical input, maps it 
into a fuzzy set (parameterized by a mean and uncertain "sparsity" measure), performs fuzzy logic relations 
over it as though it were a boolean vector, and then stores the relative membership strength of the input to each 
of the output fuzzy sets. Membership of input to fuzzy sets can be determined with a Gaussian membership 
function (or ideally a triangular or trapezoidal function for representation of steep membership transitions that 
mimic human or customer preferences) and have fuzzy rules inserted for convenience of rule extraction and 
understanding. The use of fuzzy logic highlights the fact that some advanced decision-making systems that 
learn with machine learning techniques may not arrive at customer-desirable decisions via transparent or 
interpretable means. 
 

 
Fig :3: Integration of Large-Scale EV Charging on the Grid 

 
3.1. Machine Learning Algorithms 
Thus, machine learning algorithms are promising to determine the optimal timing strategy of the driver's 
recharging actions, reducing the potential of both the impact of the charging load on the power grid and the 
rise of the energy cost in case the vehicle has a liberalized contract with prosumer modalities. Furthermore, 
constraints related to the presence of already planned trips and the minimum driving distance to be traveled 
could also be further investigated and included to improve the accuracy of the approach. Thus, in this 
contribution, the use of massive amounts of information created by the creation, storage, use, and recharging 
of smart batteries in electric vehicles is meaningfully employed to train both traditional and advanced machine 
learning algorithms.These methods will make them acquire the capability of correctly predicting—at any time—
a percentage indication to be used by the drivers for faster and more convenient recharging. This approach, 
being based on vehicle big battery data, does not infringe both the battery's integrity constraints and drivers' 
privacy issues and could be put into significant use already shortly, in concert with the ones put forth by the 
technical standards. 
 
3.2. Deep Learning Models 
Deep learning approximates complex functions, recognizes patterns inside a given text/image/sound, and even 
understands the structure of a given problem. It automatically finds the relevant features that help in 
understanding the problem. These techniques are inspired by the behavior and structure of the human brain, 
such as neural networks (NN) and convolutional neural networks. They consist of a multitude of connected 
nodes (neurons) in three layers: input, output, and hidden layers. The hidden layer plays a crucial role in 
producing the output that forms the neural network operation. The nodes in each layer are connected to the 
nodes in the adjacent layer by weights. To calculate the output of each node in each layer, the value of the 
preceding layer is multiplied by its corresponding weight. A bias and eventually a scaling factor are added to 
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them to normalize the output. The connection nodes and superposition process allow the neural network to 
perform amazing tasks. 

 

4. Implementation and Case Studies 
 
The proposed algorithms are implemented in the next-generation BMS system of LG-Chem - a world leader in 
lithium-ion battery production. Figure 8 shows the conventional BMS architecture and its control sequence. 
Each battery pack is connected to the TL tap, and control modules within each pack communicate through a 
CAN bus or a daisy-chain connection. The microcontroller, BMS-AFE (Battery Management System - Analog 
Front End), and security controllers are located in the battery module. The BMS-AFE counts the cells in the 
feedback loop and discusses with the MCU and morality towards the master controller. The collection of the 
battery-pack information is passed to the controller and sent to the car via a gateway for remote monitoring 
and control operations. The mainframe of the BMS derives from the GPU-based cloud, the AI layer is attached, 
and the AI-based DSS problems are solved. The control signals are sent back to the TL charges via the gateway 
for real-time control operations.Case studies and comparisons to the rule-based DSS examine the performance 
of AI-based DSS and demonstrate that the proposed solutions increase the energy efficiency of battery power 
management in electric vehicles and prolong the battery life. In the case of battery degradation, the AI model 
improves the state-of-charge accuracy by 18.8% on average and strengthens the battery life by 28.5% on 
average. In the condition-based maintenance case, the AI-based DSS reduces the charging cost by 21.6% on 
average, and during peak time the energy stored in the battery decreases by 28.5% on average. The results not 
only verify improvements but also demonstrate the architectural and practical benefits of AI-based BMS. In 
conclusion, due to the simple implementation, model non-identifiability, AI-based DSS can be easily developed 
or migrated to existing BMS to improve energy-efficient battery power management in electric automotive 
applications. 
 

 
Fig :4: Various critical applications of BMS in EV technology 

 
4.1. Real-world Applications                                          
 The proposed framework, as described in Section 3, has opened up a variety of new possibilities in the design 
of practical charging schedules that handle the particular characteristics of plug-in electric vehicles such as 
deadline constraints, variable driving patterns, fluctuating electricity prices, as well as battery characteristics. 
The proposed approach yielding cluster-based approximations proved to be a suitable re-weighting of the 
workload-specific objective functions and presents meaningful improvements, especially in daily-fleet-scale 
applications. Computationally efficient two-level strategies for smart-charging EV-fleet problems that can 
provide near-optimal solutions in practice are discussed and a combination with power management solutions 
for renewable power applications is elaborated.To evaluate logistics and cost efficiencies in using electric 
vehicles (EVs) for parcel delivery, the performance of our smart-charging problem is compared with optimal 
portfolio decisions for vehicle and fast charging station infrastructure investments. By incorporating real car 
usage data, we evaluate how chance constraints can carefully introduce charging flexibility by combining intra-
fleet strategies and develop a methodology with a location-routing decision model and a demand-response 
policy for solving the demand charge cost problem at a fast-charging station charging an EV-fleet serving a 
distribution network. A budget analysis based on a small carsharing fleet has shown the applicability of the 
proposed framework in the area of operating a car-sharing system. 
 
4.2. Performance Evaluation                                      
The efficiency of the chargers is gauged by noting down the input and output powers from a power meter. The 
battery terminal voltage is measured by an on-board data acquisition system. The data is logged by using the 
developed tool at regular intervals of time. The input charging power is monitored using a solid-state relay. The 
battery terminal voltage is monitored for the electric vehicle application at the output stage. A battery charger's 
efficiency curve is derived in the laboratory for identifying the low-wattage areas in a hybrid system. 
Battery performance is evaluated by noting down the energy levels, the incoming and outgoing currents, the 
internal temperature, and the SOC. The environmental temperature is also recorded. The battery terminal 
voltage is also measured and compared with the calculated voltage to show the voltage-pressure curve. The 
output of the developed analysis tool enables an improvement in the performance of the battery parameters. 
The battery shows good performance during charge and discharge at different C-rates. The charge-discharge 
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cycles are repeated frequently to identify performance-related issues. A DC-DC converter is integrated on the 
output side of the charger to control the output voltage. The developed battery charger and test bed allow for 
an energy-efficient working state. The test setup improves the performance of the electronic load. The battery 
charger is controlled at the output stage. The DC-DC charge is integrated to allow the electronic load to be 
utilized. 
 

5. Challenges and Future Directions 
 
In this paper, we have demonstrated that in-vehicle energy flow management and smart charging are both 
important for efficient and reliable system operation of electric and hybrid electric vehicles. We have presented 
energy control algorithms and benchmarks for smart charging that take into account the combination of the 
behavior of all vehicles, their availability, and mobility behavior. Indubitably, incentives will be needed to 
engage vehicle owners to participate in smart charging. The model and results in this paper guide the design of 
incentive programs and facilitate the understanding of the benefits of the aggregate electric system and the 
incentives for participating in the car supply of the latter. Furthermore, the results for the benchmark with 
unidirectional power supply intervals may provide a reference to assess the performance and costs of the 
resources that are needed to provide these resources in the market. For the unidirectional case, the relation of 
the benchmark to incentive payments could guide designs of future incentives for offering resources from 
vehicle supply.While smart charging contributes to the operation of an efficient and reliable electric system, it 
is important to realize that the resulting benefits do not exhaust the contribution vehicle electrification can 
make to the successful transition to a system that has high (intermittent) renewable penetration or the 
reduction of emissions from other fuel usage.In this paper, we emphasize the critical role of in-vehicle energy 
flow management and smart charging in ensuring the efficient and reliable operation of electric and hybrid 
electric vehicles (EVs and HEVs). Our study introduces energy control algorithms and benchmarks designed 
for smart charging, which consider the collective behavior of all vehicles, their availability, and mobility 
patterns. 
 
It is evident that incentivizing vehicle owners to participate in smart charging programs will be essential for 
their success. The models and findings presented in this paper provide insights that can guide the design of 
incentive structures and help stakeholders understand the broader benefits to the electric grid from aggregated 
vehicle participation. Additionally, our benchmarks for unidirectional power supply intervals offer a valuable 
reference for evaluating the performance and cost-effectiveness of resources required in the market.While 
smart charging significantly enhances the efficiency and reliability of the electric system, it is important to 
acknowledge that its benefits extend beyond operational improvements. Vehicle electrification plays a pivotal 
role in facilitating the transition to a grid with high penetration of intermittent renewable energy sources and 
reducing emissions from conventional fuel usage. This dual impact underscores the broader societal and 
environmental benefits of integrating smart charging strategies into the evolving energy landscape. 
 

 
Fig :5: An illustration of the roles of EVs and other suppliers/consumers in the smart grid 

 
6. Conclusion 

 
The research and implementation of such AI-based algorithms prove that the existing smart charging solutions 
have a significant potential for further improvements with the ever-increasing availability of large data sets and 
high-performance computing capabilities. We have highlighted some of the key challenges in unsupervised-
environment-based tactical optimization. Our results suggest that controllers and reinforcement-learning-
based control algorithms enable AC charging efficiency improvements that reduce the duration of the charging 
cycle, enabling more efficient use of the distribution network, as well as cost reductions for the driver. 
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Fig :6 Schematic overview of the system depicting the UKF, the aging model, and the feature 

extractor 
 
In the case of DC charging, the deductive solution enables over 1.5 times faster charging, which allows for 
battery degradation to be decreased during high-temperature operation. Since the implemented neural 
network-based state of charge correction guaranteed an 85% increase in quality, reinforcement learning 
provided promising results that motivated the development of the unsupervised AC version. We also 
highlighted the challenges of using long-duration supervised learning agents to develop the DC charging 
algorithms. This category includes the provision of on-time solutions for thousands of daily evaluations, both 
in single-family dwellings and in public external charging environments. 
 
6.1 Future Trends  
There are several ways to determine the SOC of a battery. Different methods and approaches used for this 
purpose have been reviewed by various authors. These methods are indicated in the current flows of each 
particular battery, which logically change with a SOC change. There were also proposed fusion methods using 
the above-mentioned techniques. The simplicity and, in many cases, low cost of the flow-based SOC estimation 
methods, for example, based on voltage, current, or impedance measurement, cause the emergence of 
intelligent chargers. These simple, "small", but, in some cases, effective and practical solutions are usually 
introduced as a part of more complicated, but traditional systems. It is worth mentioning that in some cases, 
they show very good results, especially in terms of battery life extension methods.Another point of interest in 
the development of chargers is the increasing complexity of electric vehicle architectures. Threats of more 
weight, design underutilization, and range anxiety create new opportunities for conceptions with variable and 
distributed energy storage elements, for example, power distribution level control in a hybrid electric vehicle 
where a propulsion battery cooperates with local, lower voltage, more energy-dense, buffer stop, and/or fast 
supercars, to obtain an electric power distribution quicker and more adaptive. This variable energy storage 
structure requires generalization of onboard energy management strategies, so fully exploiting the synergy 
potential is a little exploited at current levels. As always, this is a highly application-dependent question. As a 
result, the solutions are designed for a particular field of electric vehicles, for example, lightweight city cars or 
fully loaded long haul electric buses, or are not designed to consider the different use cases and market 
demands. 
 

 
Fig :7 Discharge voltage of lithium iron phosphate 
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