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ARTICLE INFO ABSTRACT 

 AI solutions are meant to compute real-world applicable business solutions 
using multiple branches of business applications like machine learning: 
translates practical business systems, neural network industry-leading 
development applications (manufacturing) with user interface extended and 
intelligent to cut and give unique features based on process-specific matrix 
data, deep learning: transform computer field coping up to cognitive 
transformations and can accomplish multi-task automation with constant 
self-evolution learning solutions. Deep learning revolutionizing game-
changer for: 
A) reinforced the learning fault-detection fault diagnostics (DNN), transfer 
learning for complex recommender systems (DNN), and conversation 
contextualizing (DNN Hokey's algorithm) on different areas of the 
manufacturing industry. B) Offers solutions for novel reinforcement 
algorithms like these Q-learning algorithms when traditional business AI 
procedures were time-consuming or non-stopping. While machine learning 
increases the changing business landscape, adopting AI in the manufacturing 
sector offers substantial long-term revenue savings, increasing the gap 
between competitive industries in the current competitive manufacturing 
world. AI provides new techniques for manufacturing industrial data analysis. 
This data has the potential to specialize in industrial manufacturing critical 
areas of application demand repair, maintenance forecasting causal 
reasoning, and improvement of decision-making. Manufacturing companies 
that invest in AI solutions in established profit lines demand an in-depth 
understanding of technically complex, pronounced business understandings, 
including overcoming adaptive metrics, and will ultimately be able to respond 
in real-time to any circumstances in their environment. Practical research 
proves that demand-related decisions related to AI can provide clear 
competitive advantages in established manufacturing business processes 
based on clear strategic business advantages gained from taking action by 
using AI and acquiring data. 
 
Keywords: Recent Trends in Supply Chain Management, Industry 4.0, 
Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), 
Smart Manufacturing (SM), Computer Science, Data Science, Vehicle, Vehicle 
Reliability. 

 
1. Introduction 

 
With the ever-growing number of IoT devices, different standards, frameworks, and models have been 
conceived to ensure security. However, minimal research is being undertaken to implement an adaptive 
security mechanism for the new race of IoTs that are powered by AI/ML. This paper proposes an adaptive 
security model for securing these IoT devices utilizing AI/ML risk assessment mechanisms through a 
constructed testbed. This framework allows users to utilize a hybrid risk assessment approach that primarily 
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utilizes the N-Alt model but can also revert to the original 5-step cycle model. This approach is powered by the 
decision-making capabilities of DecisionTreeClassifier, which utilizes high-risk slim circle thinning as the key 
employer for the similarity of the constructed model.In the real world, adversarial settings are operational; 
hence, these settings could be applied to each IoT device being tested through the proposed testbed security 
framework. The security mechanism has detected or blocked 12 attacks, reporting a 100% detection rate while 
performing attacks across all the devices examined. The model provides a secure 99% accuracy rate, reporting 
close to zero false negative or false favorable rates and accepting 100% of benign inputs while still blocking 
100% of malicious requests. All research concludes that AI/ML risk assessment models provide significant 
robustness towards adversarial IoT inputs in natural operational settings. The proposed adaptive security 
model is pivotal in safeguarding IoT ecosystems against evolving threats. By integrating AI/ML-driven risk 
assessment mechanisms, the framework dynamically enhances the ability to respond to emerging 
vulnerabilities and adversarial tactics. This adaptability is crucial given the diverse nature of IoT devices and 
the continually shifting threat landscape they face. The decision-making capabilities of the 
DecisionTreeClassifier ensure efficient and effective threat detection, enabling swift responses to malicious 
activities while maintaining minimal disruption to legitimate device operations.In practical scenarios, where 
adversarial settings are prevalent, the robustness of this security framework becomes evident. The model 
demonstrated a flawless 100% detection rate against a spectrum of attacks through rigorous testing across 
various IoT devices. Its high accuracy, with a reported 99% secure rate and near-zero false positives or 
negatives, underscores its reliability in distinguishing between benign and malicious  
 

 
Fig 1: Features of BlockChain 

 
inputs. Moreover, the framework's ability to adapt and learn from new data ensures ongoing optimization and 
resilience against sophisticated cyber threats.As IoT deployment continues to expand across industries such as 
healthcare, manufacturing, and smart cities, the need for adaptive security measures becomes increasingly 
critical. The success of AI/ML-driven approaches in mitigating risks highlights their potential to establish a 
new standard in IoT security, promoting trust and reliability in connected environments. Future research and 
development efforts should focus on scaling and refining these models to keep pace with the rapid evolution of 
IoT technologies and the corresponding security challenges they entail. 
 

 
Fig 2: Real-time machine learning model Data stream 

 
2. Literature Review 

 
Manufacturers face a variety of challenges in their day-to-day operations. These challenges, among others, 
involve dealing with increasing levels of production complexity, higher levels of expectations from customers 
concerning performance, increased focus on customization, and other operational factors. The advent of 
Industry 4.0 is expected to greatly alleviate some of these challenges. Industry 4.0 is an initiative that started 
as a way to rejuvenate the German manufacturing industry, but it has since been embraced around the world 
as an avenue for using information and communication technologies (ICT) to improve efficiency and increase 
automation. It represents a change in the way manufacturing is being done, heralding what is popularly 
referred to as the fourth industrial revolution.One critical aspect of manufacturing that is deeply affected by 



4129                                                                                6499), 6(30/ Kuey,  Joseph Muthu                                                                   

 

these transformations is the supply chain of manufacturing organizations. Historically, the supply chain for 
manufacturers has been handled using traditional concepts and principles of supply chain management. It is 
now possible to link the commercial supply chain with real-time data and the use of connected and circular 
production systems. This new level of production system information will enable more effective supply chain 
management. As a result of the increased need for better-equipped supply chain management in the face of the 
new Industry 4.0 innovations, this research will focus on work in this area using machine learning and artificial 
intelligence models. 
 
3. Applications of AI and ML in Manufacturing Supply Chains 
AI and ML can be used to optimize manufacturing supply chains in several ways. Forecasting customer demand 
and optimal production and inventory scheduling can lead to improved efficiency for the supply chain. 
Similarly, the optimization of pricing strategies or the improvement of order allocation in product ranges can 
lead to other supply chain efficiencies. Another important characteristic of AI and ML is the ability to be 
deployed on large industrial datasets and to make rapid decisions in the context of a smart manufacturing or 
Industry 4.0 environment. ML also provides the added advantage of identifying hidden patterns within big 
data that can be useful for guiding decision-makers in the manufacturing industry.The use of AI in 
manufacturing has significant implications for how manufacturing will be organized in the future. With the 
trend toward a more robust connection between manufacturing supply chains and customers, both mass 
customization and the trend toward Manufacturing as a Service (MaaS) will continue to gain momentum. 
Essentially, AI and ML will allow greater customer involvement with manufacturing supply chains through 
digital platforms distant from the physical manufacturing process. This change will result in a new role for 
those operating and managing manufacturing supply chains, with the somewhat abstract concept of the digital 
twin becoming more important throughout the product development and manufacturing process. 
Furthermore, AI and ML can be used to focus on sustainability and the valuable insight that smart 
manufacturing partners will generate to reveal beneficial manufacturing techniques, and ML's impact on 
manufacturing extends beyond efficiency gains and customer interaction enhancements. These technologies 
are poised to revolutionize sustainability efforts within the industry. By analyzing vast amounts of data 
generated throughout the manufacturing process, AI can identify opportunities to minimize waste, reduce 
energy consumption, and optimize resource utilization. This capability is crucial as industries worldwide seek 
to align with environmental goals and regulations. Moreover, integrating AI and ML in manufacturing supports 
predictive maintenance strategies. By continuously monitoring equipment performance and analyzing 
historical data, these technologies can predict potential failures before they occur. This proactive approach 
minimizes downtime, extends the machinery's lifespan, and reduces overall maintenance costs.As AI continues 
to evolve, its role in manufacturing will likely expand to include autonomous decision-making capabilities 
across the production lifecycle. This could lead to fully automated factories where AI systems orchestrate 
processes from raw material sourcing to product delivery, further enhancing efficiency and responsiveness to 
market demands.In essence, AI and ML are not only transforming how manufacturing supply chains operate 
but also paving the way for sustainable practices and enhanced operational resilience in the face of evolving 
global challenges. Embracing these technologies will be key for manufacturers looking to stay competitive and 
resilient in an increasingly digital and interconnected world. 
 

 
Fig 3: Middle income economy 

 
4. Challenges and Opportunities 

 
Companies are facing increasing challenges due to globalization and customer orders for individualized and 
highly innovative products. The ability to answer questions about "who has priority?" or "where should a 
bottleneck be alleviated?" and take other actions to improve efficiency in factories becomes very important and 
requires adequate tools designed using modern artificial intelligence methods. This study aims to review trends 
in the use of AI, supply chain management, and machine learning methodologies in the manufacturing 
scenario. Industry 4.0 has been highlighted among the concepts closely connected to the current state and 
expected future developments of production systems. In addition, the terms AI and machine learning have 
been detailed, and particular methods included in both concepts have been enumerated. The article listed 
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scenarios where such modern methods could be used and linked them to specific areas of supply chain 
management. The application of AI and machine learning methods mentioned in the text could be used for 
various problems often connected with changes in the production process. Due to the ongoing development of 
various industries and their increasing reliance on innovative technological solutions, the methods described 
herein may only be just the beginning. They can evolve and be used for more and more exciting and diverse 
problems. This paper may be seen as exploratory and indicate ongoing development areas. Some suggestions 
for ideas and problems in these scenarios are indicated, even if only at a very general level. This work may be 
developed in the future using case studies and employing tested AI methods in various applications. 
 

 
Fig 4: Global Manufactures Implementing AI 

 
5. Conclusion 

 
In this paper, the state of various supply chain processes is summarized, focusing on recent trends in the 
application of artificial intelligence in manufacturing. Despite significant research in demand forecasting 
through collaboration, we have observed that there is not much attention in the literature regarding this issue. 
In most cases, the relationship between the enterprises and their supply chain is kept very simple.In this study, 
we have proposed a demand forecasting model with a real-world industry. The forecasted results have 
negligible forecasting errors when compared with the regular business intelligence approach. The designed 
model yields important gains and issuggested as an efficient decision-supporting model for companies dealing 
in the heavy machinery industry. We believe that our study will contribute to the current literature by providing 
an integrated and valid real case in demand forecasting.The objective of this article is to provide a review of 
recently designed artificial intelligence-based manufacturing models for production, maintenance, logistics, 
and demand forecasting processes throughout the appropriate supply chain. We conduct a systematic literature 
review of inventory models and collect the key findings of demand forecasting, which are based on the selected 
articles, regarding the evaluation of supply chain organization.In light of our results, we summarize the recent 
trend of artificial intelligence in supply chain management and conclude our findings. We close by arguing that 
the reviewed trends provide both challenges and prospects for the better use of artificial intelligence in supply 
chain research. 
 

 
Fig 5: Machine Learning modules 

 
5.1 Future Trends                                                             
The framework is derived from the thesis goal and adapted in the context of potential use cases and enabling 
techniques. The IoT-AS framework consists of four key components: adaptive security model, security-centric 
horizontal platform architecture, unified security information repository, and AI/ML and Big and Smart Data 
analyzers. The element security framework is proposed to adapt to rapidly evolving IoT cyber-threats and the 
corresponding requirements due to the massive size and diversity of IoT systems having different properties in 
the Network and Application layers. The structured taxonomy on attack targets and features input from data 
analysis, situational awareness, and domain knowledge, and the respective expected proactive protection 
response are improved using AI/ML algorithms to increase the efficiency of the IoT-AS. AI/ML and Big and 
Smart Data technological enablers are incorporated to realize the proactive self-protection approach in a multi-
platform IoT system to combat unpredictable advanced persistent threat attacks efficiently. Since currently 
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there is no single standard that applies to all IoT platforms for security actions and thus laborious 
customization is needed, we devised a unique, security-centric horizontal platform architecture that 
orchestrates and uses existing different types of individual security solutions. But based on the joint and 
independent data analysis, a comprehensive view is provided from which context will be highly efficient. Joint 
corresponding protection measures could be taken. The architecture allows for the sharing of IoT security 
parameters along with the entire heterogeneous IoT physical objects and their environments. Data security and 
data exchange standards have become established as an important element that allows both IoT platform 
independence but also provides a data exchange that could be useful to humans desiring aggregated data on an 
entire IoT physical environment. 
 

 
Fig 6: EOQ Model Cost Curves 
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