
Educational Administration: Theory and Practice

2024, 30(1), 1870-1876 ISSN: 2148-2403 https://kuey.net/

Research Article

Evaluation Of Cytotoxicity Of Root Sample Of Shankapushpi (Clitoria Ternatea) In Breast Cancer Cells (MCF-7)

Geethanjali R¹, Dr Shubha², Manjula A C³,¹º Prathibha. K. Y⁴*, Mini M⁵, Marhoob Banu⁶*

¹Assistant Professor, Department of Botany, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001 ²Professor and HOD, Department of Botany, Government First Grade College, Vijayanagar, Bengaluru, Karnataka, India, 560104 ³Professor, Department of Sericulture, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001 ⁴Professor, Department of Botany, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001 ⁵UG Students of Chemistry and Biotechnology, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India ⁶*UG Student Botany and Zoology, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India

Citation: Prathibha K Y, Marhoob Banu, et.al (2024), Evaluation Of Cytotoxicity Of Root Sample Of Shankapushpi (Clitoria Ternatea) In Breast Cancer Cells (MCF-7), Educational Administration: Theory and Practice, 30(1), 1870-1876

Doi: 10.53555/kuey.v3oi1.6698

ABSTRACT

Breast cancer remains a leading cause of cancer-related mortality worldwide, necessitating the exploration of novel therapeutic agents. The search for effective anti-cancer agents from natural sources is an ongoing endeavor in cancer research. This study aimed to evaluate the anti-cancerous properties of the root extract of Shankapushpi (*Clitoria ternatea*), a traditional Ayurvedic herb renowned for its cognitive-enhancing, anxiolytic, and neuroprotective properties on human breast cancer cells. We investigated the cytotoxic effects of the root extract on MCF-7 breast cancer cell lines using various in vitro assays. Contrary to our expectations, the results indicated that Shankapushpi root extract did not exhibit significant cytotoxicity or inhibit the proliferation of breast cancer cells. These findings suggest that the root of Shankapushpi lacks efficacy in inhibiting breast cancer cell growth under the conditions tested. Further research is necessary to explore other parts of the plant or different extraction methods that might yield more promising anti-cancer properties.

Keywords: Breast Cancer, Anti Cancerous Properties, *Clitoria ternatea*, Cytotoxic Effects, Root Extract

Introduction

Cancer is a life-threatening condition and remains one of humanity's greatest health challenges, necessitating an effective treatment strategy. Breast cancer, with 2.26 million cases worldwide, is the most commonly diagnosed cancer and is the fifth leading cause of cancer-related deaths in women. Despite advancements, various therapies face significant drawbacks that hinder clinical treatment success. The primary cancer treatments—surgery, chemotherapy, and radiotherapy—are often complicated by issues such as metastasis, drug resistance, toxicity, and undesirable side effects. Additionally, cancer relapse is a frequent problem due to the persistence of malignant cells and cancer stem cells. The persistent challenges in cancer therapy are exacerbated by the resistance of cancer cells to synthetic drugs. Consequently, there is a continuous search for more effective methods of chemoprevention and chemotherapy. In this context, phytochemicals have attracted increasing attention for their potential role in cancer prevention and treatment. [1,2,3]

Breast cancer is the most prevalent type of cancer among women globally. Among the various types of breast cancer, triple-negative breast cancer (TNBC) is particularly aggressive, challenging to treat, and has a high likelihood of metastasis in diagnosed patients. Women with TNBC face a poor prognosis and limited treatment options, highlighting the critical need for new therapeutic agents. [4,5] Many studies indicates that flavonoids can inhibit cancer cell proliferation and delay tumor progression by suppressing metastasis and angiogenesis and by regulating apoptosis-related signaling pathways such as the Akt and PTEN pathways. Consequently, consuming foods rich in flavonoids may aid in preventing the initiation or early progression of cancer cells. [6] *Clitoria ternatea*, also known as Asian pigeonwings, bluebellvine, blue pea, butterfly pea, cordofan pea, or Darwin pea, is a plant species from the Fabaceae family, native to the Indonesian island of Ternate. It is a perennial vine or creeper with elliptic, obtuse leaves and thrives in moist, neutral soil. The plant is renowned

^{*}Corresponding authors: Prathibha K Y, Marhoob Banu

^{*}Email: kyprathibha3@gmail.com, marhoobbanu@gmail.com

for its vibrant deep blue flowers with light yellow markings, measuring about 4 cm long and 3 cm wide. Some varieties produce white or pink flowers.

The plant's fruits are flat pods, 5–7 cm long, containing six to ten seeds each, which are edible when young. *Clitoria ternatea* is commonly cultivated as an ornamental plant and for land rehabilitation purposes, such as in coal mines in Australia, due to its low maintenance needs. As a legume, it forms a symbiotic relationship with soil bacteria called rhizobia, which convert atmospheric nitrogen into a usable form for plants, thus enhancing soil quality through nitrogen-rich plant decomposition. Chemical compounds from *C. ternatea* include triterpenoids, flavonol glycosides, anthocyanins, and steroids. Notably, the plant contains cyclic peptides called cliotides and anthocyanins, particularly ternatins, which give the flowers their distinctive blue color. [7,8,9,10] In the current study, we evaluated the anticancer effects of shankapushpi on breast cancer cells by assessing its cytotoxicity.

Materials and Methods

Plant sample preparation

Roots of *Clitoria ternatea* were washed properly and sundried until it lost its complete moisture. After drying it was ground to fine powder using pestle and mortar and seived.

Fig 1: Root Samples of Clitoria ternatea

Cell culture

MCF-7 cell lines were procured from ATCC, stock cells were cultured in DMEM with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/mL), streptomycin (100 μ g/mL) in a humidified atmosphere of 5% CO2 at 37°C until confluent. The cells were dissociated using 0.05% trypsin and centrifuged at 1000 rpm for 5 mins. The culture media was discarded and the cell pellet was gently re-suspended using 2 ml DMEM complete media. The viability of the cells was checked and a single cell suspension of 5.0 x 105 cells/ml was prepared. Source of reagents: DMEM, FBS, Penstrep, Trypsin-procured from Invitrogen.

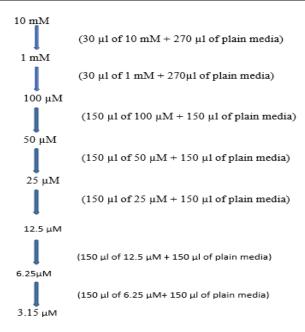
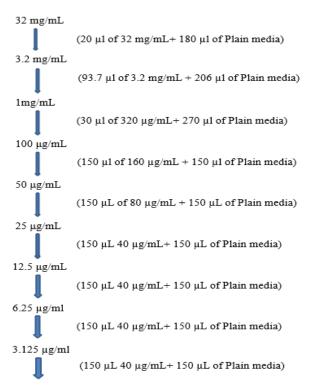

Si. No	Particulars	Source	Catalogue No
1	T25 flask	Falcon	353108
2	DMEM Medium	Gibco	31600034
4	Trypsin EDTA 0.05%	Gibco	25300062
5	FBS	Gibco	10082147
8	MTT reagent	Sigma	M5655
9	DMSO	Sigma-Aldrich	D2650

Table 1: Reagents

Preparation of test solutions


Standard: Doxorubicin

10 mM stock of Doxorubicin was taken. Further Serial two fold dilutions were prepared from 100 μ M to 3.125 μ M using) plain media for treatment. (Media used for particular cell lines mentioned in procedure)

Sample preparation

For cytotoxicity studies, 32 mg/ml stocks were prepared using plain media. Serial two folds dilutions were prepared from 320 g/ml to 5 μ g/ml using plain media for treatment. (Media used for particular cell lines mentioned in procedure).

Procedure

To each well of the pre-labelled 96-well microtiter plate, 100 μ L of the prepared cell suspension (50,000 cells/well) was added and incubated at 37°C with 5% CO2. After 24h of incubation, the supernatant was removed and the monolayer was rinsed with DMEM. To each pre- designated well, 100 μ L of test drugs at various concentrations were added and incubated for 24hrs. After incubation, the test solutions in the wells were discarded and 100 μ L of MTT reagent (4 mg/10 mL of MTT in PBS) was added to each well. The plates were incubated for 4 h at 37° C in 5% CO2. The supernatant was removed and 100 μ L of DMSO was added and the plates were gently shaken to solubilize the formazan crystals. The absorbance was measured using a microplate reader at 590 nm wavelength using a multimode plate reader, Spectra max 13X, Molecular devices. The percentage growth inhibition was calculated using the following formula and the concentration of test drug to inhibit cell growth by 50% (IC50) values is generated from the dose-response curves for each cell line using GraphPad Prism 5.0 software.

Calculating Inhibition:

% Inhibition = ((OD of Control-OD of sample)/OD of Control) x 100.

Statistical evaluation: IC50 Value

The half maximal inhibitory concentration (IC50) is a measure of the effectiveness of a compound in inhibiting biological or biochemical function. This quantitative measure indicates. How much of a particular drug or other substance (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor, or microorganism) by half. The IC50 of a drug can be determined by constructing a doseresponse curve and examining the effect of different concentrations of antagonists on reversing agonist activity. IC50 values can be calculated for a given antagonist by determining the concentration needed to inhibit half of the maximum biological response of the agonist. IC50 values for cytotoxicity tests were derived from a nonlinear regression analysis (curve fit) based on a sigmoid dose-response curve (variable) and computed using Graph Pad Prism 5 (Graph pad, SanDiego, CA, USA)

Nonlinear regression

In statistics, nonlinear regression is a form of regression analysis in which observational data are modelled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximation.

Results

The results suggested that the Test Compound showed less inhibition. Hence IC50 cannot be calculated. The reference standard Doxorubicin has shown the IC50 value of 14.33 µM against MCF-7 cells.

Table 2: Cytotoxic effect of test compound on MCF-7 cell lines (n=1)

tuble 2: Cytotoxic effect of test compound on west / cen mies (n-1)				
Concentration	OD	% inhibition		
Control	1.144	0.00		
5	1.1205	2.05		
10	0.9765	14.64		
20	0.911	20.37		
40	0.8445	26.18		
80	0.7166	37.36		
160	0.692	39.51		
320	0.621	45.72		

Table 3: Cytotoxic effect of test compound on MCF-7 cell lines (n=2)

Concentration	OD	%inhibition
Control	1.14	0.00
5	1.1153	2.18
10	0.9721 0.906	14.74
20	0.8338	20.53
40	0.711 0.666	26.87
80	0.618	37.64
160		41.58
320		45.79

Table 4: Cytotoxic effect of test compound on MCF-7 cell lines (n=3)

Conc.	OD	%inhibition
Control	1.14	0.00
5	1.1049	2.93
10	0.9529 0.898	16.28
20	0.893	21.10
40	0.707 0.658	27.79
80	0.614	37.88
160		42.19
320		46.06

Tubic j. of totalia direct of building a donor abroin on liter / con inter								
n=1			n=2		n=3			
Conc.	OD	%inhibition	OD	%inhibition	OD	%inhibition	Average %inhibition	IC50
1.56	0.9969	12.86	0.9934	12.87	0.9894	13.07	12.93	
3.13	0.862	24.65	0.8596	24.60	0.8558	24.81	24.69	
6.25	0.712	37.76	0.7094	37.78	0.7015	38.37	37.97	
12.50	0.6557	42.68	0.6525	42.77	0.6501	42.88	42.78	14.33
25.00	0.512	55.24	0.521	54.30	0.515	54.75	54.77	
50.00	0.416	63.64	0.411	63.95	0.412	63.80	63.80	
100.00	0.248	78 22	0.2276	70.16	0.2264	70.22	78.00	

Table 5: Cytotoxic effect of standard doxorubicin on MCF-7 cell lines

IC50 Plot:

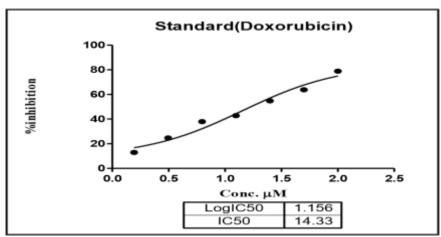


Fig 2: IC50 plot of Standard

Discussion

Clitoria ternatea, commonly known as Shankhpushpi, is a traditional medicinal plant extensively utilized in Ayurvedic medicine for its cognitive and neuroprotective properties. However, recent scientific interest has extended beyond its traditional uses, exploring its potential anticancer properties. Testing Clitoria ternatea for cytotoxicity against breast cancer cells is particularly compelling due to several reasons grounded in both ethnopharmacological knowledge and emerging biomedical research. Firstly, the global burden of breast cancer underscores the urgent need for novel therapeutic agents. Despite advances in treatment, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Conventional therapies, including chemotherapy, radiation, and surgery, often come with significant side effects and may not be effective against all types of breast cancer. Thus, the discovery of new, effective, and less toxic therapeutic options is paramount. Clitoria ternatea, with its long history of medicinal use, represents a promising candidate for such investigations. Secondly, phytochemicals present in Clitoria ternatea have shown significant pharmacological activities that could be beneficial in cancer therapy. The plant contains various bioactive compounds such as flavonoids, alkaloids, and glycosides, which have been documented to exhibit antioxidant, anti-inflammatory, and neuroprotective effects. These compounds are known to modulate key cellular pathways that are also implicated in cancer development and progression. For instance, flavonoids have been reported to Induce apoptosis, inhibit cell proliferation, and suppress metastasis in various cancer cell lines, including breast cancer. The rich phytochemical profile of Clitoria ternatea thus warrants its evaluation for potential cytotoxic effects on breast cancer cells. Additionally, the safety profile of Clitoria ternatea as established through traditional use and preliminary toxicity studies adds to its appeal as a candidate for further investigation. Herbal medicines often offer a more favorable safety profile compared to synthetic drugs, reducing the risk of adverse side effects. This aspect is particularly important in cancer therapy, where the toxicity of conventional treatments can severely impact the quality of life of patients. Furthermore, the exploration of Clitoria ternatea for breast cancer treatment aligns with the broader scientific trend of integrating traditional medicine with modern biomedical research. This integrative approach not only validates traditional knowledge but also expands the therapeutic arsenal available for complex diseases like cancer. By conducting rigorous scientific testing, we can uncover the full potential of *Clitoria ternatea*, possibly leading to the development of new, plant-based anticancer drugs that are effective and have minimal side effects.[7,8,9,10]

Clitoria ternatea, known for its extensive medicinal uses, has been documented by Agarwal P et al., for the treatment of hypertension, neurodegenerative diseases, ulcers, high blood pressure, epilepsy, vomiting, diabetes, sunstroke, bleeding, improving memory, and decreasing cholesterol. Given the vast medicinal properties of Clitoria ternatea, this study aimed to examine its anticancer activity by testing its cytotoxicity

against breast cancer cells. However, the results revealed that Shankhapushpi is not effective in inducing cytotoxicity in breast cancer cells.[11] Similarly, Debjit Bhowmik et al. documented the use of Clitoria ternatea as a traditional Ayurvedic brain tonic for improving memory and treating conditions such as dementia, OCD, phobias, insomnia, anxiety, and stress, as well as Parkinson's and Alzheimer's diseases. Given its vast medicinal properties, this study aimed to investigate its anticancer activity by testing its cytotoxicity against breast cancer cells. However, the results indicated that Shankhapushpi is not effective in inducing cytotoxicity in breast cancer cells.[12] Thakur et al. documented the nootropic, anxiolytic, antidepressant, antistress, neuroprotective, antiamnesic, thyroid-regulating, antioxidant, hypolipidemic, analgesic, antimicrobial, antidiabetic, antiulcer, anticatatonic, reproductive, cardiovascular, anti-addiction, and anthelmintic activities of Clitoria ternatea. In line with these comprehensive medicinal properties, our study aimed to investigate its anticancer potential by testing its cytotoxicity against breast cancer cells. However, our results indicated that Shankhapushpi is not effective in inducing cytotoxicity in breast cancer cells.[13] Research by Tamboli, A.M. et al. revealed that Clitoria ternatea exhibits cytotoxic and apoptotic effects against the HepG2 cell line. Inspired by their findings, our study examined the cytotoxic effect of Clitoria ternatea on MCF-7 breast cancer cell lines. However, our results indicated that Shankhapushpi is not effective in inducing cytotoxicity in MCF-7 cells.[14] Ashpak. M et al. evaluated the anticancer activity of leaf extracts of *Clitoria ternatea* using the Brine Shrimp Lethality Bioassay and found that the ethyl acetate extracts showed significant activity. In contrast, our study revealed that *Clitoria ternatea* is not effective in inducing cytotoxicity in breast cancer cells.[15] Pawar et al., conducted GI50 inhibition study on ethanolic extracts of *Clitoria ternatea* against human breast(MCF-7) and colon cancer (HT-29) cell line. Results revealed that extracts inhibited percent control growth in dose dependent manner for both breast and colon cancer cell line. GI50 (Concentration of drug causing 50% inhibition of cell growth) for breast cancer cell line in *Clitoria ternatea* extract was more than 80 µg/ml. GI₅₀ for colon cancer cell line in all the extracts was found to be more than 80 µg/ml. This result is in contradictory with our result, where root extract of Clitoria ternatea was not effective in inducing cytotoxicity in MC-F cell lines.[16]

Conclusion

This study aimed to evaluate the anti-cancerous properties of the root extract of Shankapushpi (*Clitoria ternatea*) on human breast cancer cells (MCF-7). Despite the herb's renowned cognitive-enhancing, anxiolytic, and neuroprotective properties, the root extract did not exhibit significant cytotoxicity or inhibit the proliferation of MCF-7 cells. Various in vitro assays demonstrated that the root extract failed to achieve a half-maximal inhibitory concentration (IC50), suggesting a lack of efficacy under the tested conditions. These findings indicate that Shankapushpi root extract is ineffective in inhibiting breast cancer cell growth, underscoring the need for further research to explore other parts of the plant or different extraction methods that might reveal more promising anti-cancer properties.

References

- 1. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. The Development and Causes of Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9963/
- 2. National Institutes of Health (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series [Internet]. Bethesda (MD): National Institutes of Health (US); 2007. Understanding Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20362/
- 3. Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the Definition of Cancer. Mol Cancer Res. 2023 Nov 1;21(11):1142-1147. Doi: 10.1158/1541-7786.MCR-23-0411. PMID: 37409952; PMCID: PMC10618731.
- 4. Menon G, Alkabban FM, Ferguson T. Breast Cancer. [Updated 2024 Feb 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482286/
- 5. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel). 2021 Aug 25;13(17):4287. Doi: 10.3390/cancers13174287. PMID: 34503097; PMCID: PMC8428369.
- 6. Cheon M, Chung M, Park Y. Association between Dietary Intake of Flavonoids and Cancer Recurrence among Breast Cancer Survivors. Nutrients. 2021 Aug 30;13(9):3049. Doi: 10.3390/nu13093049. PMID: 34578927; PMCID: PMC8469315.
- 7. Hannan MA, Sultana A, Rahman MH, Al Mamun Sohag A, Dash R, Uddin MJ, Hossen MJ, Moon IS. Protective Mechanisms of Nootropic Herb Shankhpushpi (Clitoria ternatea) against Dementia: Network Pharmacology and Computational Approach. Evid Based Complement Alternat Med. 2022 Oct 3;2022:1015310. Doi: 10.1155/2022/1015310. PMID: 36225186; PMCID: PMC9550454.
- 8. Melloni E, Grassilli S, Romani A, Rimondi E, Marcuzzi A, Zauli E, Secchiero P, Paganetto G, Guerrini A, Sacchetti G, Tacchini M. Clitoria ternatea Choisy's Extraction, Chemical Characterization and Evaluation

- of the Potential Effects on Glycaemic Balance in a 3T3-L1 Adipocyte Cell Model. Nutrients. 2023 Mar 31;15(7):1727. Doi: 10.3390/nu15071727. PMID: 37049568; PMCID: PMC10097163.
- 9. Sharma R, Singla RK, Banerjee S, Sinha B, Shen B, Sharma R. Role of Shankhpushpi (Clitoria ternatea) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies. Neurosci Biobehav Rev. 2022 Sep;140:104795. Doi: 10.1016/j.neubiorev.2022.104795. Epub 2022 Jul 22. PMID: 35878793.
- 10. Verma S, Sinha R, Kumar P, Amin F, Jain J, Tanwar S. Study of Clitoria ternatea for antioxidant and anticonvulsant activity. Cent Nerv Syst Agents Med Chem. 2012 Mar;12(1):55-9. Doi: 10.2174/187152412800229161. PMID: 22280406.
- 11. Agarwa P, Sharma B, Fatima A, Jain SK. An update on Ayurvedic herb Clitoria ternatea Choisy. Asian Pac J Trop Biomed. 2014 Mar;4(3):245-52. Doi: 10.1016/S2221-1691(14)60240-9. PMID: 25182446; PMCID: PMC3868798.
- 12. Debjit Bhowmik, K.P. Sampath Kumar, Shravan Paswan, Shweta Srivatava, Akhilesh pd.Yadav, Amitsankar Dutta, Traditional Indian Herbs Clitoria ternatea and Its Medicinal Importance, Journal of Pharmacognosy and Phytochemistry, ISSN 2278-4136, Online Available at www.phytojournal.com
- 13. THAKUR, SHIFALI & Kaurav, Hemlata. (2021). AYURVEDIC MEDICINAL IMPORTANCE OF SHANKHPUSHPI (CLITORIA TERNATEA): POTENTAIL COGNITION BOOSTING HERB. INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCE AND HEALTH CARE. 4. 10.26808/rs.ph.i11v4.01.
- 14. Tamboli, A.M., Wadkar, K.A. Comparative cytotoxic activity of Clitoria ternatea against human hepatoma cell line (HepG2) and normal cell line (L929) via apoptosis pathways by flow cytometry analysis. Bull Natl Res Cent 46, 145 (2022). https://doi.org/10.1186/s42269-022-00835-8
- 15. Ashpak. M. Tamboli, Kiran. A. Wadkar. Anticancer activity of leaves extracts of Clitoria ternatea and Mimosa rubicaulis (Lam.) by Brine Shrimp Lethality Bioassay. Research Journal of Pharmacy and Technology 2021; 14(10):5427-2. Doi: 10.52711/0974-360X.2021.00946
- 16. Pawar, Manjushree & Dwivedi, Jayesh. (2023). GI50 INHIBITION STUDY ON ETHANOLIC EXTRACTS OF CLITORIA TERNATEA, MICHELIA CHAMPACA AND CHROMOLAENA ODORATA AGAINST HUMAN BREAST (MCF-7) AND COLON CANCER (HT-29) CELL LINE BY SULFORHODAMINE B (SRB) ASSAY METHOD. 2. 2023.
- 17. Crouch, S.P.M. et al. (1993). The use of ATP bioluminescence as a measure of cell proliferation and cytotoxcity. J. Immunol. Meth. 160, 81-8.
- 18. Gonzalez, R.J. and Tarloff, J.B. (2001) Evaluation of hepatic sub cellular Fractions for alamar blue and MTT reductase activity. Toxicology in vitro. 15. 259-9.
- 19. Hattori, N. et al. (2003) Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal. Biochem.319287-95.
- 20. Kangas, L. et al. (1984) Bioluminescence of cellular ATP: A new method for Evaluating cytotoxic agents in vitro. Med. Biol. 62, 338-43.
- 21. Lundin, A. et al. (1986) Estimation of biomass in growing cell lines by adenosine triphosphate assay, Methods enzymol.133,27-42.
- 22. Cell Viability and Proliferation. Mark Frei, BioFiles v6 n5, 17-21.
- 23. FFDenizot, R R Lang. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods 1986-05-22.
- 24. T TMosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983-12-16.