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ARTICLE INFO ABSTRACT

Recognizing the connections between genes is essential to comprehending bio-
logical processes in all living things with cells. Gene regulatory network is the
blueprint of the connections between the genes. Understanding fundamental
cellular processes and the dynamic behavior of biological systems is the primary goal
of research with gene regulatory networks. In conventional biology, it is difficult to
reconstruct such regulatory networks from time-series gene expression data, and it
has not yet been possible to perfectly reconstruct a network that is biologically
accurate. The behavior of a genome can be expressed by a biological system, but
computational biology sheds light on its underlying causes. To infer the genetic
relationships from the biological network dynamics obtained from the experimental
time series gene expression data set, researchers have used various methods from
decades. Many researchers prefer the power law-based methods like s-systems, half-
systems and recurrent neural networks whereas some of them consider the
probabilistic approaches like Bayesian networks or Boolean. Nowadays a new
approach to graph signal processing also plays an important role in terms of
reconstruction of the gene regulatory network. The objective of this paper is to give
a proper overview for the recreation of the gene regulatory network from the time
series datasets or from the micro array data sequences. The approaches that the
researchers have employed to recreate the gene regulatory network are thoroughly
surveyed in this publication. Additionally, it provides future researchers with an
understanding of the advantages and disadvantages of each approach, encouraging
them to think creatively and beyond the box to increase the network’s prediction
accuracy. This paper also includes comparative studies regarding the inference
accuracy of the regulatory network which is going to help the researchers to
understand the most prominent and significant approach for this work.

Keywords: Gene Regulatory Network, Optimization, Bayesian Network, Boolean
Network

1 Introduction

Every living thing is made up of cells. The interactions and functionality of the cells provides power to every
biological process. Genes are the fundamental functional units of living cells. Each cell consists of several
genes, but it is not necessary that each of them be activated. The genes which are activated are responsible for
each of the activities of the living organism. The active genes are used to produce proteins through
Transcription and Translation. The process of production of proteins from genes is called Central Dogma
which shown in the Figure 1.
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Fig. 1: Flowchart of Central Dogma

Transcription is the process of synthesis of a mRNA (messenger RNA) from a part of a DNA (Deoxyribonucleic
acid) by the enzyme RNA polymerase. From this RNA copy the proteins can synthesize through the process of
Translation. In Translation, mRNA is decoded into a specific ribosome from which the required amino acid
chain or polypeptide is produced. A transcription factor, a protein controls the production of mRNA
(messenger RNA) from DNA (Deoxyribonucleic acid) via attaching to a particular DNA sequence. For bacteria
or prokaryotic cells, the Translation and Transcription process are coupled whereas for eukaryotic cells, it is
decoupled. Gene interactions regulate each other to initiate every biological function; conversely, incorrect
gene interactions can lead to disease in the organism. Hence, the main motivation is to develop a model to find
the true interaction between the genes which helps to find the root cause of many diseases and the way a
biological system works. This makes the researchers tempted to find the exact regulations between the genes
which can be helpful for society to fight against some severe diseases. The expression level of gene serves as a
gauge for its regulation. A typically directed graph G (V, E), where V represents a set of nodes that signify the
genes and the set of edges E, can be used to depict the interactions between the genes. This graphical
representation of genes is known as the Gene Regulatory Network (GRN). An example of real-life GRN is given
in Figure 2. This interaction is represented by a weighted directed graph, where 0 indicates no interactions, +1
activation, and —1 inhibition. However, a GRN has two main issues: the Curse of Dimensionality and Noise.
The noise present in the data sets is the impurities which can be caused by internal or external disturbances as
well as environmental dangers. The “curse of dimensionality,” occurs when a data set has more genes than time
points. This phenomenon is referred to as effective overload in data set theory. When there are many genes
present in a big network, this issue occurs. This problem does not occur in small networks where the number
of genes (4—20 genes) is substantially fewer than the number of time points. A representation of time series
data set is given in Table 1. To find the regulatory relationship between the genes is quite a challenge for the

researchers to predict it.

(w0

Fig. 2: The original network of the E. coli SOS DNA Repair network.
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Table 1: Representation of time series dataset

Time point  |G1 G2 G3 G4

6 0.23 0.65 0.98 0.00
12 0.89 0.45 0.67 1.00
18 1.00 0.00 0.45 0.00
24 - - - -

30 - - B -

36 - - - -

The micro array data experiments assist researchers in obtaining time series expression [14] values at different
time points with different genes to understand gene interactions in a living organism. Reverse Engineering is
a popular methodology to find the interactions between the genes. Researchers used a variety of techniques for
reverse engineering for many years. Some of them became successful in inferring the regulatory interactions
whereas some of them failed drastically. The literature review shows that differential equations and the
probabilistic technique can accurately simulate biological behavior. Consequently, a lot of scientists use the
well-liked Boolean Network [12] technique to anticipate how genes will interact. Some of them prefer Bayesian
networks [23] for the job. But most promising method is the power law-based approach S-systems [10]. But
the computation time is very much high for S-systems, so another approach Half-system has been introduced
by [15]. Recurrent Neural Network (RNN) [34] is also plays an important role in the reconstruction process of
GRN. Subsequently, RNN is essential in both replicating the structure of the GRN and maintaining the
biological characteristics of the living organism in a variety of techniques, including Long Short-Term Memory
(LSTM) Networks, Gated RNN Networks, Time Delay Neural Networks (TDNN), and RNN with Graph Neural
Networks. The rest of the paper is arranged as follows. In section 2 we have discussed the literature reviews
regarding the above-mentioned approaches in detail. In section 3 an overview of optimization techniques is
given and in section 4 a discussion of the methods of reconstruction process is given. The paper concluded with
section 5.

2 Literature survey

Several distinct models or architectures have been used in the application of Gene Regulatory Network (GRN)
analysis employing Recurrent Neural Networks (RNNs) to capture the temporal dynamics of gene expression
data and infer regulatory links. We have surveyed a few well-known models here.

2.1 Boolean Network

The root of Boolean Networks lies in the automation theory. This network serves as a dynamic model for the
synchronization of its nodes. It is the simplest network model which is capable of explaining the properties of
biological systems and other networks. The Boolean system of n interconnected binary elements, or nodes,
makes up a Boolean network. Every node has the capacity to receive input from other nodes. The input may
differ from node to node or be the same for every node if the number of inputs is K. The representation of a
genetic network through a Boolean network was first proposed by Kaufmann in 1969 [12]. In his article, he
described a directed graph as a NK Boolean network, where each node has a degree of at most K and N is the
number of nodes present in the graph. An example of GRN using the Boolean Network is given in the Figure 3.
In [12] the author showed that the binary genes (on or off) had stability comparable with that of the living
organism. In the year of 2002, Kubiket et al. [20] showed two ways to model the gene network using a Boolean
network and also Artificial Neural Network (ANN). These two models are based on the gene expression
measurement using the gene expression data set.
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Fig. 3: An example of Boolean Network
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Another work also helps in the path of gene regulation through the Boolean network, proposed by Xiao et al.
[40]. Here, the author has used probabilistic Boolean network, a dynamic approach for analyzing of gene
regulatory network.

2.2 Bayesian Network

Bayesian Network is another probabilistic visual aid which is capable of combining two main areas of
mathematics, i.e. graph theory and probability which is very useful for inductive learning. This supervised
learning process is complex but is also capable of solving many learning tasks. A directed acyclic graph, G(X,E),
which represents the Bayesian network, has two sets of edges: E, which represents the dependency among the
gene expressions, and X, which represents the set of all nodes, or the gene expressions for the GRN. This
network implicitly represents the Markova’s assumptions. An example of Bayesian network for the inferring
the GRN is shown in the Figure 4. In 2003, Perrin et. al [33] used a statistical machine learning approach in
identification of gene regulatory network and they used Bayesian network to deal with the stochastic nature of
the gene regulatory network. In 2004, Zou et al. [48] introduced a dynamic Bayesian network approach in gene
regulation which increased the accuracy of the network and reduced the computational time. An example of
the dynamic Bayesian Network is given in the Figure 5. In 2011, Campos et al. [5] used the Bayesian network
approach in three ways for gene expression data. First, they induced Bayesian classifier from micro array data,
then they have proposed a preprocessing scheme to induce the Bayesian classifier for gene expression data and
lastly, they evaluated the different types of Bayesian classifiers to evaluate this kind of data. They took nine sets
of various cancer data sets for their proposed model strategy.
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Fig. 4: An illustration of GRN using Bayesian Network
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Fig. 5: An illustration of GRN using dynamlc Bayesian Network

2.3 S-systems

The formalization of the complex biological system started at the very beginning of 1960 but in the year of 1988,
Savageau [37] first proposed the S-system. This S-system can be said to be the canonical form of many
differential equations which are nonlinear in nature. Later, the S-system was employed by numerous
researchers to deduce gene regulatory networks as well as complex biological traits. In 2010, Wang et. al [39]
proposed S-system to interfere the gene regulation. Though the S-system is applied to a very small network
their unified approach makes the application of the S-system to explore comparatively large-scale networks by
fast parameter estimation for finding the interaction. In August 2013, Palafox, Member, IEEE, et. al [32]
proposed S-systems and Dissipative Particle Swarm Optimization (DPSO) based model. They used this model
to analyse a small five-gene network and also two in silico actual data sets of yeast and SOS DNA Repair
network of E. coli. Juang et. al [46] presented a hybrid parameter estimation algorithm-based S-systems model
in 2015 to study the gene regulatory network. In the year of 2016, Mandal et. al [27] proposed a model which
can infer GRNs. The Bat algorithm and the S-system are the foundation of this model. They used the model in
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a 5-gene artificial noise-free data set and as well as in vivo noisy data set of 8-gene E.coli DNA SOS Repair
network and a real-world 20-gene network extracted from GNW.

2.4 Half-systems

To reconstruct the gene regulatory network using S-system 2N (NN +1) parameter is required to train. As the
model is non-linear it is time-consuming for large networks. A value greater than zero means activation and
less than zero means regression but at one time both regression and activation are not possible. In
computational biology, Khan et. al [16] firstly derived a very promising method to reconstruct the GRN with
fewer training parameters from the S-systems, i.e. half systems.

Half-system is the first part of the S-system model. Here only N (N +1) number of parameters is required to
train, and so time requirement is less. The discrete mathematical equation of half-system is as follows:

d\ H[\ ]q:J
6

where a; and gijare the training parameters and X; is the expression level of the i-th gene at the time ¢, Xj is the
expression level of the j-th gene at the time point t + 1. The discrete mathematical equation of the Half-systems
is as follows:

N

Xi(t+ At) — Xi(t) —— H [X,]94 (t)
At =1 ©

The main advantage of this model is that it does not support activation and regression simultaneously. But on
the other hand, as previously said half system itself is very much unstable. In order to stabilize the model during
the reconstruction of the gene regulatory network, we consequently added a negative feedback term.
Consequently, the equation of the half system changes to the following with the feedback term:

N

Xi(t+At) = At-ai- [T X7 (0 + (1 = ) - Xa(1)
11
(3)

here p; is the feedback constant, a random value within [-1, 1]. As the second exponent term is removed in the
half system thus the problem of S-System has overcome. For the fitness value calculation, we used MSE based
fitness evaluation function [41]. The equation is as follows:

1 N 1 ) . ,
MSE = w0 - Z:Xl:[_\l(t) — Xi(t)]

4

where the expected value of gene expression for the subsequent time point is denoted by Xi(t).In [7] also used
this half system using a new meta-heuristic approach combined with Artificial Bee Colony algorithm with the
integration of Dragon Fly algorithm. Here author also gets a satisfactory result in terms of reverse engineering.

2.5 Recurrent Neural Network
Recurrent Neural Network is another power law-based approach which provides a significant success rate in
the reduction of the false interaction prediction in the GRN. The equation is provided as the following [38]:

d.I‘,’ 3 |4
sy = Zw',, )+ B; | - zi (t) (5)

where f{.) is defined as,

f(z) = —

———x (6)
1+e~=
Here, 7;, §i and wi;are the training parameters of RNN and x; is the gene expression level at the time t.

In January 2007, Xu et al. proposed an RNN based model where Particle Swarm Optimization (PSO) was used
as training algorithm [42]. A 4-gene artificial network and an 8-gene DNA SOS Repair network of E. coli were
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used to generate an experimental data set in real life using this model. Using the same previously mentioned
data sets, the authors used Differential Evolution (DE) and PSO optimization algorithms to create a second
RNN-based model in July 2007 [41].

The author said that, though RNN is quite difficult to train parameters, still it can provide the insight of the
dynamic nature of the network and capable to find the interaction between the genes in a network. In 2012,
Kentzoglanakis et. al [13] proposed a model based on RNN, Ant Colony Optimization (ACO), and PSO. The
model parameters were trained using PSO, and biologically plausible candidate architectures were produced
by the authors using ACO. They used a 10-gene real-world network, from which the 4-gene synthetic data set
was created artificially using Gene Net Weaver (GNW), and a 10-gene synthetic data set. All that GNW is is a
simple Java tool.

Mandal et. al [27] proposed an RNN, Bat Algorithm, and PSO based model in 2016. Here, the writers examined
a synthetic dataset of a small-scale artificial network, a synthetic dataset created from a real-world yeast
network, and a synthetic and real-world dataset of the DNA SOS Repair network of E. coli. Here, the authors
improved the method for shrinking the search space by maintaining a constant number of regulators for every
gene.

In 2015, Razaet et. al [35] proposed an RNN, Back propagation through Time and Kalman Filter based model.
This suggested model was applied to real data from the DREAM challenge 50-gene network, the E. coli DNA
SOS Repair network, the in vivo reverse-engineering and modeling assessment yeast network (IRMA), and the
in silico 10-gene network. In 2017, Mandal et. al [28] proposed a model based on RNNs and the Bat Algorithm.
First, six sets of noise-free data, each involving four genes, were analyzed using this model. Then, this
methodology was used on a 4-gene noisy dataset. This dataset has 5% added Gaussian noise.

2.6 Long Short-Term Memory (LSTM) Networks

Another popular approach that helps to mitigate the vanishing gradient problem in RNNs and preserve long-
term dependencies is LSTMs [25]. They are very good at capturing sequential patterns and have been
successfully applied to GRN modeling. While theoretically intriguing, current techniques offer no discernible
practical benefits as compared to the backdrop in feed- forward nets with constrained time frames. An LSTM
is made up of three gates: an output gate, a forget gate, and an input gate. Gates in Long Short-Term Memory
(LSTM) provide sigmoid activation functions, which output a value between 0 and 1, usually one of the two.

0” means that the gates are preventing anything from passing through, and ”1” means that everything is
permitted to do so. The equations for LSTM can be given by Equation 7.

it = 0 (wi (ht=1,2¢) + bi)
ft = o (wi (he=1,2¢) + by) (7)
01 = 0 (wi (hi=1.7¢) + bo)

where h_; denotes the output of the preceding LSTM block at timestamp (¢ — 1), and o de- notes the sigmoid
function. The weight of the i-th input gate is b, wi, and the biases for each gate are b. The input gate (i) is
represented by the first equation, which indicates the new data that will be stored in the cell state (as we shall
see below). The forget gate (f;), which instructs what data to discard from the cell state, is represented by the
second equation. The output gate (ot), which is utilized to activate the last block’s final output at timestamp t,
is represented by the third one. To get the memory vector for the current timestamp (c) the candidate is
calculated as

¢ = tanhw, [he—1, 24| + be
ct = ft-ci—1+ 1 C (8)

hy = o - tanh ¢,

where c¢”; represents a candidate for the cell state at timestamp t and c; represents the cell state or memory at
timestamp t. The above equation shows that the cell state is aware of what it needs to remember from the
previous state, f; - ¢i—1, and what it needs to take into account from the current timestamp, i; - ¢.. Once the
authors have filtered the cell state one last time, they apply the activation function, which determines what
should be displayed as the output of the current LSTM unit at timestamp t. We can pass this h; the output from
the current LSTM block through the softmax layer to obtain the expected output (y:) from the current block.

2.7 Gated Recurrent Unit (GRU) Networks

A kind of recurrent neural network (RNN) architecture called Gated Recurrent Networks (GRUs) [4] is
intended to more effectively capture and handle long-range dependencies in sequential data. To mitigate
vanishing gradient problems and better retain important infor- mation over longer sequences, they incorporate
gating mechanisms to selectively control the flow of information within the network. GRUs consist of reset and
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update gates that regulate the information flow, enabling them to remember or forget information at different
time steps during sequence processing. There are various variations of the full gated unit, where gating is
implemented by varying how the bias and the previous hidden state are combined. There is also a more basic
version called the minimal gated unit. The Hadamard product is indicated by the operator © in the following
Equation 9.

— Fully gated unit

Initially, for t = 0, the output vector is h, = 0.

D=0 (”: Tt + I.“v; . h.g..l -1 b:)

rn=oc(W,-z¢+U; - hy—1+b;)

ht = O ("".h - Tt + (,v‘rh (I'{ (= h(-l) + bh)

he = (1 —2) @ hem1 + 20 © hy

where the input vector is denoted by x;, the output vector by h;, the updated gate vector by z, and the reset gate

vector by . The parameter metric for learning is W, and the vector metric is b. The original hyperbolic tangent
is ¢, and the original logistic function is a.

— Minimal gated unit
With the exception of merging the update and reset gate vectors into a forget gate, the minimal gated unit

(MGU) and fully gated unit are comparable. This suggests that Equation 8, which represents the output vector
equation, needs to be modified.

ft =0 (Hf T4 + (v‘rf chy—1 + b,)
hl =0 (I"In Tt + [V;h (7'1 ® h(_l) + bh) (10)
he =(1—fi) ® hemr + fr © hy
where the training metrics are W, U and b, and the input and output vectors are x; and hy, respectively.

— Light gated recurrent unit The light gated recurrent unit (LiGRU) [2] applies batch normalization (BN),
substitutes the ReLU activation for tanh, and completely eliminates the reset gate.

z =0 (BN (W, -x)+U: - hy—1)
he = ReLU (BN (W- - x,) + U - h¢—1) (11)

ht =z & ,11_1 =+ (1 — 31) O ilt

4

A Bayesian approach has been used to study LiGRU [2]. A variant known as the light Bayesian recurrent unit
(LiBRU) was discovered through this analysis, and it performed marginally better on speech recognition tasks
than the LiGRU.

2.8 Time-delayed Neural Networks (TDNNs)

TDNNs [9] process sequential data using fixed-size windows, segmenting gene expression time series into
windows to predict gene interactions within these segments. There is no one person who is credited with
creating Time Delayed Neural Networks (TDNNs); rather, the idea stems from the larger fields of neural
networks and time-series analysis, though for the reconstruction process this methodology still now not in use.
The hidden layer and output layer activations of a time delay neural network (TDNN) [31] are calculated using
the following equations. Equation 14 provides the following for a single-layer TDNN:

— Hidden layer activation

;h(t) :Zw‘i '.1‘(2‘—T,‘)+[)h (12)

i=0

where
— Hidden Layer Output (after activation function fy)
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h (t):f;,(:h (f)) (1‘3)

Where: h (t) is the output of the hidden layer at time t.
— Output Layer Activation

M

20 (t) =) v -h(t—";)+bo (14)

3=0

where z, (t) represents the activation of the output layer at time ¢, and v; is the weighted matrix joining the
hidden layer to the output layer. The delayed outputs of the hidden layer are indicated by h (t — y;), while the
time delays for the output layer’s connections are indicated by yj.

— Output (after activation function f;)

Yyt = fo (20 (1)) (15)

Where y(t) is the output of the TDNN at time t.

2.9 Hybrid Models - RNNs with Graph Neural Networks (GNNs)

Integration of RNNs with Graph Neural Networks allows the incorporation of graph structures representing
gene regulatory interactions. This hybrid approach captures both temporal dependencies and network topology
for a more comprehensive GRN model. Modelling the complex relationships and interactions between genes is
made possible by the combi- nation of Recurrent Neural Networks (RNNs) and Graph Neural Networks
(GNNs) within the framework of Gene Regulatory Networks (GRNs). RNNs are well-suited for capturing
temporal dependencies in sequential data, such as gene expression profiles over time. They can learn patterns
and relationships within temporal sequences, aiding in understanding the dynamics of gene expression.
However, constructing and training such hybrid models require careful design considerations, effective
integration of RNN and GNN components, as well as optimization to handle the inherent complexity and scale
of gene regulatory networks. The equation can be written as:

zt = Concat (he, hagnn) (16)

Where henn represents the output of the GNN on the graph structure at time t. Concat denotes the operation
to concatenate the RNN hidden state and GNN output.

— Final Output:
Yt = Output Layer (z) (17)

It is the predicted output at time t and the output layer, denoted as OutputLayer, is responsible for producing
predictions by combining the representations.

3 Optimization Techniques

Till now there are some approaches for this reconstruction of the regulatory network using the micro-array
time series data set. According to the “No Free Lunch” (NFL) theory [21],” any elevated performance over one
class of problems is offset by performance over another class for any algorithm.” Thus, considering this NFL
theory there are several techniques to solve this meta heuristic problem but none of them are efficient to
correctly detect the regulation of a GRN.

3.1 Particle Swarm Optimization

Eberhart and Kennedy developed Particle Swarm Optimization, a stochastic optimization technique based on
population, in 1995. It is modeled after the way fish schools or flocks of birds behave. PSO is an evolutionary
optimization algorithm which improves the candidate solutions in an iterative process. In the year of 2007, Rui
et al. [32] has proposed a hybrid of PSO and differential evolution (DEPSO) to optimize the problem of gene
regulatory network. Their study showed that DEPSO has performed better than RNN.

In the year of 2009, Zhang et. al proposed a noble hybrid model of particle swarm optimization and recurring
neural network (PSO-RNN) [46] for gene inference method. Chien-Pang Lee et. al in the year 2011 tried to
reconstruct a gene regulatory network using the microarray data set using GA/PSO [22]. PSO is effective for
local optimization, but it is poor for exploration. Thus, in the year 2017 Liu, et. al proposed [24] Multi leader
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PSO (MPSO) which is capable of enhancing the exploration search of PSO by changing the memory structure
of the canonical PSO. Here the particles choose their leaders using the game theory instead of random selection.
Many particles in a specially bounded search space are said to be unaware of the food’s location, according to
the theoretical idea of PSO. There will be one particle among the others whose location is closest to the food
source. The particle is said to be in the best position globally among all of the particles at that particular
location. That particle will lead the other particles. The best position a particle has found thus far during a local
search is referred to as each particle’s personal best position. Up until the stopping condition is met, this
process keeps going.

For solving a problem using PSO we first initialize the position vector and the velocity vector of each particle
randomly consisting of same number of parameters and same range. At each instant of set all the randomly
initialized parameters produce candidate solution. Each parameter should be within a specified range and that
will be the same for all particles. The range of every parameter may vary. There will be an objective function
which will calculate the fitness value for each particle using the corresponding parameters. We will calculate
the fitness value using the objective function and then find the local best which is the position of the particle
up to which it has minimum fitness so far. This position is stored as the personal best (pbest) position for each
particle. Up to this PSO will do the local search. After this, we will step to the global version of PSO. Here we
will find the global best position of the full search space i.e the particle’s location which has reached most nearly
to the position of the food. The minimum of the pbest, or gbest, is the symbol for this global best. The particle’s
position and velocity are then updated in the subsequent generation using the following equations:

vi(t+ 1) =vi(t) - wi + c1 -1 - (pbest; — zi(t)) 18)
+ca -T2 - (gbest — zi(t)) 28

.I‘,’(f-f-l):l’,‘(f-{-1)+.1‘,‘(f) (19)

where wj is the inertia weight, ¢, and c. are called the learning factor, initialized as ¢, = ¢, = 2, r, and r, are
randomly generated two numbers within [0,1], and vi(t) and xi(t) are the initial velocity vector and initial
position vector of the ith particle at the t instance.

3.2 Bat Algorithm Inspired PSO (BAPSO)

Bat inspired PSO (BAPSO) is another novel approach for the optimization problem which is the hybridization
of the BAT algorithm [43] and PSO. Yang et al. used the echolocation behavior of micro bat for searching
operation. Microbats employ a unique form of sonar known as echolocation to find food and avoid obstacles.
The microbats are able to determine the objects’ direction and distance by receiving the waves. The bats in this
BAT algorithm can be assumed to fly at random, and some bats are sent out for local exploration and search
after each iteration.

The creator of the BAPSO algorithm, as suggested by Khan et. al [17], took into consideration that each
microbat is initially at rest. The two PSO parameters, the inertia weight w and r, are evenly distributed and
chosen at random within the range [0,1]. Because of this, the BAT algorithm can both explore and exploit. The
lowest error criterion or the maximum quantity of repetitions serves as the halting condition. The mathematical
representation of the BAPSO becomes as follow:

vi(t+ 1) =r-vi(t) + c1 - r1 - (pbest; — xi(t))

(20)
+ca - 12 - (gbest — xi(t))

zi(t+1) =vi(t+ 1) + zi(t) (21)

3.3 Grey Wolf Optimization Inspired Particle Swarm Optimization (GWPSQO)

Considering the social leadership hierarchy and hunting behavior of the grey wolf, Mirjalili et. al [30] presented
Grey Wolf Optimisation, another algorithm inspired by nature. As the top predators, grey wolves typically dwell
in packs of five to twelve. There are four different kinds of wolves in each group. The decision of what to hunt
is primarily made by the alphas, the male and female pair who lead the group. The second tier of the hierarchy
is made up of beta wolves, the subordinate wolves that support the alphas in decision-making and other pack
activities. It is possible for these beta wolves to be male or female. After alpha, the beta wolves represent the
next best option (solution) in the group. The next category of pack candidates are those classified as delta under
beta. The pack’s final group, known as Omega, serves as the group’s scapegoat.

Khan et al. [17] has suggested another hybrid meta heuristic, the GWPSO, and integrated this hierarchical GW
approach into the conventional PSO. The particles in this suggested method remember the second and third
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best solutions in addition to the best one during each iteration. Next, the following is an improvised global best
solution for Equation 18:
3
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where g, is the first best solution, g- is the second best solution, g is the third best solution respectively. Thus,
the equation 18 becomes,

vi(t +1) =7 -vi(t) + c1 - r1 - (pbesti — z:(t))

(23)
+C2-T2 - (gbeSfm(:an - ll(t))

3.4 Artificial Bee Colony Optimization (ABC)
Artificial Bee Colony optimization is another meta-heuristic nature-inspired algorithm which is based on the
forging behaviour of the honeybee. It was first proposed by Karaboga et al. [11] for the unconstrained
optimization problem. It has been proved that it is superior to any other existing heuristic algorithm for
unconstrained problems. In the proposed algorithm there are three types of bees in a colony: Employed bees,
Onlookers, and scouts. Half of the colony consists of employed bees and the remaining half includes the
onlookers. For every employed bee, there is only one food source, i.e. the number of food sources is equal to
the number of employed bees in the hive. The scouts are employed bees whose food supply has run out. The
location of the food source, or the position of the working bee, is one potential solution to the optimization
problem, and the amount of nectar is the best solution, or the optimization problem’s fitness value.
The following equation defines the probability value by which the onlooker bee chooses the food position:

pi = I,fl_t' (24)

Y _fitn

1=1

where P is the number of the food source, pi is the position of the food source, fit; is the fitness value of the ith
position. In order to produce the candidate solution or the food position from the old one ABC used the
following equation:

S new

old
Lij

=Zi; + @ij(Tij; — Tik) (25)

where j is the randomly selected index and k € 1, 2, 3, ... ,P and ¢;;is the randomly chosen number in between
[1,-1]. It manages the process of producing potential food sources. The found food source is presumed to be
abandoned if it is determined that it cannot be improved, and the scout bee reinitializes it using the equation
below:

—z . ) (26)

+ 7'(”1(1(0, 1 ) (‘1".7"1101' min /
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here x; is the position of the discarded food source and j € 1, 2, - - - P . Babayigit et. Al [1] has modified this ABC
algorithm by providing a probability function for improving the exploration mechanism of the onlooker bee.
The author proposed that the onlooker bee will choose the food source according to the likelihood function

which is as follows:
—1
% = exp (—) (27)
p- fi

where the fitness value normalized within [0,1] is denoted by f;, and p is the governing parameter of the ABC
algorithm. It signifies that the higher the fitness there is the more probability for the selection of food source
by the onlooker bees. The position of onlooker bee is also improved by the authors for increasing diversity.
Thus, the equation for onlooker bee becomes:

Li,j = Thest,j : 2 (Di.] (-rb(:sl.] - -l‘i..;) (28)

In the equation 28, xpest is the best solution in the current population, and x;; is the present position exploited
by the onlooker bee. This is known as the ABCbest algorithm. In the year 2015, Forghany et. al [8] used ABC
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and modified ABC in GRN construction with S- system as objective function. They set the population size as 50
and applied their proposed work to three networks. The maximum iteration was 2,000,000 for the first two
networks and 5,000,000 for the third network. They proposed that modified ABC gave a superior result in the
context of the GRN rather than any other evolutionary algorithm.

4 Discussion

As per the previous literature survey Gene regulatory networks (GRNs) play a crucial role in understanding
how genes interact and regulate various biological processes within organ- isms. Analyzing these networks can
provide insights into cellular behavior, development, and disease mechanisms. Strategies and optimization
techniques in GRN analysis are diverse, encompassing computational, experimental, and integrated
approaches. Various approaches are present for this reconstruction process which is discussed below Table 2.

Table 2: Comparative studies of various approaches
Method Observations
Computational models like Boolean|sHelp to find out the interactions between the genes.
network [40], Bayesian network [33] oIt fails to define the dynamic nature of biology. «Sometimes
these models fail to represent the temporal dynamics which
results as the loss of information.
Reverse engineering algorithms [36], [29]l*Infers GRN structures from experimental data.
eData dependency is the main issue of this method
sInference of causality is another consequence of this
approach
Single-cell RNA sequencing [26] *Enable the reconstruction of GRNs at single-cell
resolution.
»Sparse and noisy data are the limitations of this approach.
«Cellular heterogeneity complicates the GRN reconstruction

rocess.
Network Fusion and Multi view learningjsA comprehensive view of network.
[45], [44] -Computational cost is more.
eIncreased Sensitivity to Errors.
-Overfitting
Constraint-based modeling techniques|sUsed for the metabolic analysis of the cellular metabolism.
[3] eIntegration with metabolic networks.

«Hypothesis generation.

«Simplified Representation of GRN.

-Limited Incorporation of Regulatory Information.
Evolutionary algorithms [19] +Global optimization.

«No derivative required.

«Computational cost is very high.

eParameter Tuning is challenging.

Machine Learning and Deep LearningleCan Capture Nonlinear Relationships.

[47] eFeature Selection and Dimensionality Reduction. «Data
Quality and Preprocessing is required.

*Model Selection and Hy- per parameter Tuning.

Reviewing the comparative studies between various approaches now we need to compare the accuracy of the
optimization techniques to find the most adoptable techniques for the reconstruction of gene regulatory
network which is stated in the Table 3.

Table 3: Comparative studies among the optimization techniques

Name of the Optimization Algorithms | Accuracy
PSO [18] 79%
BAPSO [18] 78%
GWPSO [17] 88%
ABC [17] 91%

Computational models [6] simulate the interactions between genes and their products, such as transcription
factors and regulatory elements. Techniques like Boolean networks, ordinary differential equations (ODEs),
Bayesian networks, and agent-based models are commonly used to represent GRNs computationally. Every
method has advantages and disadvantages when it comes to capturing various facts of the dynamics of gene
regulation. Reverse engineering algorithms [36, 29] infers GRN structures from experimental data, such as
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gene expression pro- files or chromatin immunoprecipitation sequencing (ChIP-seq) data. These algorithms
include methods like relevance networks, Bayesian network inference, and mutual information-based
approaches. They aim to identify regulatory relationships between genes and predict the underlying network
topology. Multiple optimization techniques also being useful for this reconstruction of GRN which already
discussed in the section 3. Single-cell RNA sequencing [26] techniques (scRNA-seq) enable the reconstruction
of GRNs at single-cell resolution. However, analyzing single-cell data poses unique challenges due to noise,
sparsity, and heterogeneity, requiring specialized algorithms for network inference. Network Fusion and Multi-
view learning [45], [44] approach integrating multiple types of omics data, such as gene expression, DNA
methylation, and protein-protein interaction data, provides a more comprehensive view of GRNs. The accuracy
and robustness of inferred GRNs can be increased by combining heterogeneous data sources using integration
techniques like network fusion and multi-view learning algorithms. Constraint-based modelling techniques
[3], such as flux balance analysis (FBA) and metabolic control analysis (MCA), analyze GRNs within the context
of cellular metabolism. These methods consider constraints on biochemical reactions and cellular re- sources
to predict gene regulatory mechanisms that optimize metabolic objectives, such as growth rate or energy
production. Evolutionary algorithms optimize GRN models by iteratively refining network structures to fit
experimental data. Evolutionary algorithms optimize GRN models by iteratively refining network structures to
fit experimental data. Techniques like genetic algorithms and simulated annealing search through the space of
possible GRN configurations to identify models that best explain observed biological behaviors. In GRN
models, evolutionary optimization is capable of handling big search areas and intricate fitness landscapes. The
best nature-inspired algorithms for optimizing GRN parameters are PSO, BAPSO [43], and ABC [11]. The
ability of machine learning and deep learning [47] techniques to identify intricate patterns in high-dimensional
data has made them popular in GRN analysis. Algorithms such as neural networks, random forests, and
support vector machines can be trained about regulatory links using large-scale genomic datasets, which
enables the algorithms to predict gene interactions and regulatory mechanisms with accuracy. For GRNs to
have biological significance, experimental validation of their computational predictions is required.

5 Conclusion

Reconstructing gene regulatory networks (GRNs) through surveying the field yields important information on
problems, upcoming paths and cutting-edge techniques. The survey shows that though reconstructing GRNs is
still a challenging and intricate task, it holds great promise for advancing our knowledge of how genes are
controlled and how cells operate. For the purpose of deriving GRNs from high-throughput omics data,
including gene expression, DNA-protein interactions, and epigenetic changes, a variety of computational and
experimental methods have been devised and implemented. To sum up, the survey emphasizes how crucial it
is for computational biologists, bioinformaticians, and experimental biologists to work together
transdisciplinary in order to advance the field of GRN reconstruction. Researchers can continue to unravel the
intricate regulatory networks governing cellular processes and diseases by addressing the issues raised in this
survey and utilizing cutting-edge technologies and methodologies. This will ultimately lead to advancements
in precision medicine and therapeutic interventions.
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