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ARTICLE INFO ABSTRACT

Intrusion Detection Systems (IDS) are essential component of cyber security
countermeasures to protect networks against cyber-attacks. IDS have become
more sophisticated and capable of identifying complex attack patterns with
the initiation of machine learning (ML) techniques in IDS detection engine.
However, adversarial evasion attacks are a significant threat towards Machine
Learning. These attacks involve subtly modifying malicious inputs to evade
detection while maintaining their malicious intent. This paper presents a
comprehensive comparative analysis of the impact of various adversarial
evasion attack techniques on different machine learning models used in IDS
implementations. We evaluate the robustness of commonly used models.
Logistic Regression, Gradient Boosting Classifier, and Multi-layer Perceptron,
are evaluated against FGSM and PGD adversarial attacks. We demonstrate
the vulnerabilities of each model and discuss the implications of these
findings for the design and deployment of robust IDS. The results highlight
the necessity for adversarial defense methods to mitigate the risks posed by
adversarial evasion attacks to ensure the reliability and security of ML-based
IDS in real-world applications.

1. Introduction

Intrusion Detection Systems (IDS) play a vital role in the cyber security solutions of organizations to protect
the networks by monitoring the network traffic. IDS have ability to detect suspicious activities and potential
threats in network traffics by searching the signature or patterns of malicious activities in network logs.
Traditional IDS highly rely on signature-based or rule-based methods. These methods are only effective
against known threats but not perform well in identifying zero-day-attacks [1].

Machine Learning (ML) has been emerged as a powerful tool for enhancing the detection capabilities of IDS.
IDS can learn from historical network data to identify patterns and anomalies associated with malicious
activities by leveraging the pattern recognition power of ML algorithms. This ability to generalize from past
cyber-attacks behaviour enables ML-based IDS to detect previously unseen cyber-threats to make them more
robust and versatile compared to traditional methods [2]. Various ML models have been successfully applied
in the context of IDS to improve detection accuracy and efficiency. Logistic Regression, Gradient Boosting
Classifier, and Multi-layer Perceptron have shown significantly impressive performance for IDS datasets.
Despite all the aforementioned benefits of ML in IDS, these ML models have been proven not to be ideal and
are still vulnerable to attacks. One such kind of powerful attack is an adversarial evasion attack, whereby an
attacker manipulates input data intentionally in order to fool the ML model to misclassifying a malicious
activity as benign [3]. These imperceptible perturbations can result in quite substantial performance
degradation in the ML-based IDS. Realization of the implications of adversarial evasion attacks will be key for
designing robust and trustworthy IDS.

The primary objective of the present paper is a comparative analysis of the impact of adversarial evasion
attacks on the different ML models used in the IDS. In our experiments, we tested three algorithms, Logistic
Regression, Gradient Boosting Classifier, and Multi-layer Perceptron against two gradient based adversarial
attack techniques: Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD. We show in
extensive experiments how vulnerable each of these models is and discuss the implications of these on the
design and deployment of robust IDS. The contributions of this paper are threefold:
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¢ A fine-grained performance evaluation on performance degradation of various ML models in IDS with
adversarial evasion attacks.

e A comparative analysis that illustrates the weaknesses and strengths of the ML models in adversarial
manipulations.

e Insight towards potential defence strategies to improve the strength of ML-based IDS in such an attack
scenario.

[ ]

The contributions of this research comprise making the IDS more secure and resilient by elaborating on

thevulnerabilities of ML models to adversarial evasion attacks through effective countermeasures proposed

2. Related Work

Mourabit et. al. conducted on some issues of network security using the Naive Bayes, Random Forest,
Support Vector Machine, and K-means ML algorithms that identify attacks of the following four types: DOS,
PROBE, U2R, R2L. They have derived the result that the developed RFC is much more effective than existing
methods; the hierarchical clustering method can easily improve system performance [4]. In paper [5], the
author compares Random Forest, Support Vector Machine, Gaussian Naive Bayes, and Logistic Regression
classifiers for network intrusion detection in supervised machine learning. The best-performing algorithm
was determined according to metrics like F1-Score, accuracy, precision, and recall. The result indicated that
with these parameters, the Random Forest Classifier performed better than other classifiers. Wang et al.
introduced a intrusion detection model utilizing logistic regression. Evaluation on the NSL-KDD dataset
demonstrates that their approach achieves commendable results in accuracy, detection rate, and false alarm
rate [6].

Recent Literature has demonstrated the capability of adversarial perturbations, even of small magnitude, to
severely affect machine learning model-based detectors, but the solutions are still in their nascent stage [7],
[8], [9]. In recent work, Hu, W. et al., presented an algorithm called MalGAN, which performs attacks against
a machine learning-based malware detector by running it in a black box setting. A surrogate detector was
designed based on a neural network to replace the original detector against malware. An adversarial example
generator, trained from a neural network, was utilized to generate adversarial examples that could fool this
surrogate detector. Such an approach helps regulate the flow of distributions of adversarial examples and
changes in probability distribution quickly disorient the learning process of the malware detector. It showed
that adversarial attacks could be potentially effective in a black-box setting without prior knowledge of the
machine learning algorithm [10].

Biggio, B. et al. proposed a testing evasion attacks method through gradient descent against neural networks
(NNs) and Support Vector Machines (SVMs). Their proposed evasion attack has been tested through an
attack on a handwritten digit classification task and an attack on a malware detection system for PDF files.
The results show how popular classification algorithms, that is, NNs and SVMs, can be easily fooled when the
attacker possesses a very low amount of knowledge about the training data. This brings to attention the
concerns for using classification algorithms in applications sensitive to security issues [11].

Ensemble models have shown promising performance for Network Intrusion Detection Systems (NIDS) by
combining multiple classifiers to enhance detection accuracy [12], [13]. While individual machine learning
models like Support Vector Classifier (SVC) and Multi-Layer Perceptron (MLP) have demonstrated
effectiveness in NIDS, ensemble methods can further improve detection rates by leveraging the strengths of
different classifiers. Additionally, incorporating a feedback mechanism in the NIDS model can enhance
learning from past predictions and rectifications, contributing to better overall performance. By utilizing
ensemble techniques alongside feature selection methods and feedback mechanisms, NIDS can achieve
higher accuracy rates in detecting network intrusions, crucial for maintaining robust network security in the
face of evolving cyber threats.

Most of the discussed literature underlines high vulnerabilities for machine learning models, especially
neural networks and Support Vector Machines, under evasion attacks. Literatures show that adversarial
techniques, including gradient descent and neural network-based adversarial example generation, can
compromise effectively popular classification algorithms in the black-box setting with a minimum a priori
knowledge. The ML models are evaluated on image datasets in most of the recent literature. There is strong
need of assessment of ML models to evaluate the robustness against evasion attack with network datasets due
to the different nature of data distribution from image datasets.

3. Methodology

In this study, we adopted the gray-box threat model, where an adversary has partial knowledge of the ML-
models incorporated in IDS and have access to the training and testing datasets. It means with these
restrictions, the adversary is able to generate adversarial examples based on methods such as Projected
Gradient Descent and Fast Gradient Sign Method. Adversaries use these techniques to craft perturbations
that mislead the trained model into making wrong decisions that is, classifying the malicious attack traffic as
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benign. It exploits partial information and advanced attack methods toward the compromise of the model's
integrity and reliability, leading to misbehaviors in distinguishing among legitimate and malicious network
traffics. This approach emphasizes the vulnerabilities in the robustness of the model and the need for
stronger developments in defenses against sophisticated gray-box attacks. Detailed approach is described in
Figure-1.

Test Model

Figure 1: Block Diagram of Methodology

3.1 Machine Learning Algorithms

Three machine learning models: Logistic Regression (LR), Gradient Boosting Classifier (GBC), and Multi-
layer Perceptron (MLP) are used for the comparison. LR is very simple in architecture and very efficient in
terms of computation requirement. GBC is an ensemble learning model and Feed-Forward Neural Network.

3.1.1 Logistic Regression (LR)

Logistic Regression is a linear model for binary classification that estimates the probability of a binary
outcome based on one or more predictor variables. Despite its simplicity, it is widely used in IDS due to its
interpretability and efficiency. Logistic regression models the probability P(Y=1/X), where Y is the binary
dependent variable (target variable) and X represents the independent variables (features). The output of
logistic regression is a probability score between 0 and 1 [14].

3.1.2 Gradient Boosting Classifier (GBC)

Gradient Boosting Classifier is an ensemble learning technique that builds a series of decision trees, where
each tree corrects the errors of its predecessor. This method is known for its high predictive accuracy and
robustness, making it suitable for complex IDS tasks. GBC builds an ensemble of trees sequentially, where
each tree corrects errors made by the previous one. It focuses on reducing the errors (residuals) of the model.
Unlike traditional boosting algorithms that adjust weights, GBC fits each new tree to the residuals (gradient)
of the loss function of the previous model [15]. This gradient descent approach makes it particularly effective
in reducing bias and improving predictive accuracy.

3.1.3 Multi-layer Perceptron (MLP)

Multi-layer Perceptron is a class of feed forward artificial neural networks consisting of multiple layers of
nodes. Each node, or neuron, in one layer connects with a certain weight to every node in the following layer.
MLPs are capable of capturing complex patterns in data, which is advantageous for detecting intricate
intrusion patterns [16].

3.2. Adversarial Threat Model

An adversarial example is a training sample with slight, purposeful changes in its features to bring about
misclassification in a machine learning (ML) model. The very existence of adversarial examples makes ML
models vulnerable to adversarial attacks.

The large capacity of ML architectures often leads to the occurrence of gaps between the distribution of data
that the model can withstand and the actual underlying data distribution, resulting in insufficient exploration
of the data distribution in training datasets, and hence, a gap existing in the training data manifold.
Adversarial attacks exploit such unexplored regions, referred to as adversarial subspaces, by carefully
perturbing features in legitimate training samples with synthetic noise.

In this paper, we probe two well-known techniques for adversarial evasion attack against the named ML
models above. Evasion attacks produce a form of adversarial example that misleads the model during
inference into making the wrong decision.

In this scenario, the adversarial test samples can be tampered in such a way that they can pass by the sensing
mechanism and get classified as not malicious. Figure-2 shows the evasion attack adversary while undergoing
the DNN model testing procedure. Adversarial attacks can affect both linear and nonlinear classifiers and are
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categorized under the white-box attacks because the adversary will have knowledge of the classification
model to design adversarial examples.
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Figure 2: Adversarial threat model for adversarial examples generation

3.2.1. Fast Gradient Sign Method (FGSM)

FGSM generates adversarial examples by adjusting the input data in the direction of the gradient of the loss
function with respect to the input. This method perturbs the input by a fixed amount in the direction that
increases the model's error. FGSM is a single-step adversarial attack that perturbs the input data in the
direction of the gradient of the loss function with respect to the input [17]. The formula for generating an
adversarial example using FGSM is:

x'=x+4 exsign(V(J(0,x,y)) (1)

Here x’ denotes the adversarial example corresponding to input sample x, ¢ is the constant parameter, J is the
loss function of the classifier, and 0 denotes the learning parameter of the model for input sample x with
target class label y.

3.2.2. Projected Gradient Descent (PGD)

PGD is an iterative variant of FGSM that applies small perturbations multiple times, projecting the perturbed
input back into the feasible input space after each step. This method is more effective than FGSM in finding
adversarial examples that are harder to defend against. PGD is an iterative attack that applies FGSM multiple
times with smaller step sizes and projects the perturbed input back onto the e-ball around the original input
[18].

Given an input sample x, the goal of the PGD attack is to find an adversarial input x' that maximizes the loss
function L(f(x"), y) subject to a constraint on the distance between x and x' under some distance metric d(x,
x") < e. Here, f(x") denotes the output of the model for the adversarial input x', and y is the true label of the
input x. The PGD attack can be formulated as an iterative algorithm-1.

Algorithm 1 PGD attack for binary classifiers

Input; mput vector v, binary classifier /) step size a, number of iteration &, perturbation constant £
Output: adversarial example x
L. Initialize x'=x
2, fori=1tok
3 Compute the gradient of the loss function with respect to input as
d = VL(f(x").y)
' Compute the perturbation
§ = a-sign(d)

5 Project the perturbed wput
ifid < &)
x'=x'=¢
else if(§ > ¢)
x' X + £
else
X'=x'+46
6. end for
7. returnx

For our experiments, we use a well-known benchmark dataset for IDS, such as the NSL-KDD dataset. This
dataset includes a wide range of network traffic features and labels indicating normal or various types of
attack traffic.
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3.3 Experimental Setup

In the experimental setup, we have trained a Deep Neural Network (DNN) model as surrogate model for
binary classification of the network traffic instance as benign or attack based on statistical information on
network flow. Adversarial examples are generated using the surrogate model with FGSM and PGD methods
with gary-box threat model, and the ML models are evaluated on these adversarial examples.

We have used NSL-KDD dataset to evaluate the impact of evasion attacks over ML-models for IDS
implementation. NSL-KDD have flow based network traffic. The dataset has been pre-processed to remove
missing values and normalization of numerical values. The categorical values are encoded using label encoder
technique.

NSL-KDD is the improved version of the KDD 99 dataset that addresses and overcome from various
problems of the KDD 99 dataset. This dataset contains 5 different attack classes. In this work, we have used
the binary classes (attack and benign) only. Dataset describes 42 features, including class label. It has flow-
based features. Each row in the NSL-KDD dataset is labeled as o for normal, and 1 for attack records. In our
experiments, we used 117478 records for training and 57863 for testing, including 56000 benign samples,
and 119341 attack samples [19].

3.3.1 DNN Model Implementation

We have used the DNN architecture for the implementation of IDS as shown in Figure-3 to experiment on
both NSL-KDD dataset. The ADAM optimizer has been used and sliced the data into 64 batches repeated over
the 20 epochs for training. First, we have trained the model using the training dataset and analyzed the
performance using the test dataset. Then we generate the attack samples using this DNN surrogate model
with FGSM and PGS adversarial attacks and analyzed the impact of attack on ML models Logistic Regression,
Gradinet Boosting Classifier and Mluti-Layer Perceptron under evasion attack and non-adversarial
environment for comparison.

Actvabon Function Relu Relu Sgmod

Tratrung Datnsat

Input Layer Dense Layat Dropout Layer  Donse Layer  Dropout Layer  Oulpud Layet

Figure 3: Architecture of DNN employed as Surragolte model for gray box attacks

3.3.2 Evaluation Metrics

The assessment metrics are playing important roles in evaluating the performance of a machine learning task.
In this study, our task is to classify the network traffic flow into two classes, i.e., binary classification, where
positive is an attack traffic flow and negative is a normal traffic flow. To assess the performance of the ML
models under adversarial and non-adversarial conditions, we use some parameters like Accuracy, Precision
Rate (PR), Recall Rate (RR), and F1-Score. Our model's predictions can be classified into two classes: either
correct (True Positive, True Negative) or incorrect (False Positive, False Negative). True Positives (TP) are the
number of attack traffic flows correctly labelled as an attack, while True Negatives (TN) represent the number
of benign traffic flows correctly labelled as benign. False Positives (FP) are benign samples that get
misclassified as attacks, while False Negatives (FN) is actually attack samples that are misclassified as benign.
These values have the application of defining the classification metrics. Based on this evaluation metrics are
defined:

Accuracy: It describes how often the classifier predicts the correct class for an attack and benign sample. It

is calculated as:
TP+TN
(2)

Accuracy = ——
Y = IPTTN+FP+FN

Precision Rate: It explains how many of the attacks predicted traffic samples turned out to be positive.

Precision Rate (PR) = TPT+PFP (3)

Recall Rate: It defines how many of the actual attack traffic samples are predicted correctly with our model.
The recall rate should be high for a network traffic analyzer.

Recall Rate (RR) =

TP
TP+FN

4
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F1 Score: The F1 Score is the harmonic mean of precision and recall. It is maximum when Precision is equal

to Recall.
PR*RR

PR+RR

1. F1Score (F1) =2 (5)

4. Results and Analysis

In this section, we present and analyze the performance of the Logistic Regression (LR), Gradient Boosting
Classifier (GBC), and Multi-layer Perceptron (MLP) models under FGSM and PGD adversarial evasion
attacks. The models are evaluated using various performance metrics, including Accuracy, Precision, Recall,
and F1 Score.

The performance of surrogate DNN model is evaluated first for simulating the peroper adversarial examples.
It performed well and achieved detection of attacks with 98.2% accuracy, 96.5% precision rate, 98.9% recall
rate, and 97.6% F1 score for the NSL-KDD dataset as presented in Table-1 for non-adversarial settings.

Table 1: Performance comparison of DNN in the non-adversarial environment and under adversarial
attack using the NSL-KDD dataset

Accuracy Precision Recall F1 Score
Non-Adversarial Environment 98.2% 96.5% 98.9% 97.6%
Under Adversarial Attack (FGSM) 57.3% 35.6% 19.3% 25.6%
Under Adversarial Attack (PGD) 33.3% 25.6% 11.3% 15.6%

Now, the adversarial examples are generated using FGSM and PGD method by attacking this well trained
surrogate model and impact of adversarial examples are evaluated.

4.1 Impact of Adversarial Attacks on ML Models Performance

The results are presented in Table-2, Table-3 and Table-4 for the performance of each model under no attack
and two types of adversarial attacks: FGSM, PGD. The Gradient Boosting Classifier consistently
demonstrated superior resilience compared to Logistic Regression and Multi-layer Perceptron across various
metrics including 99% Accuracy, 98% Precision, 99% Recall, and 98% F1 Score. Specifically, under FGSM
and PGD attacks, GBC maintained higher accuracy and precision, reflecting its robustness in distinguishing
between benign and malicious network traffic despite adversarial perturbations. Conversely, LR and MLP
showed a marked decline in performance under the same conditions, indicating their susceptibility to
adversarial manipulation. But, Both the attacks are successful and have degraded the performance of all the
classifiers.

Table 2: Logistic Regression Performance
Accuracy Precision Recall F1 Score

Non-Adversarial Environment 96.2% 96.2% 97.1%  96.6%
Under Adversarial Attack (FGSM) 51.1% 45.2% 48.6%  46.6%
Under Adversarial Attack (PGD) 40.2% 38.1% 42.5%  40.3%

Table 3: Gradient Boosting Classifier Performance
Accuracy Precision Recall Fi1Score

Non-Adversarial Environment 99.3% 98.2% 99.1%  98.4%
Under Adversarial Attack (FGSM) 70.2% 72.5% 65.6% 67.3%
Under Adversarial Attack (PGD) 56.5% 63.1% 55.3% 59.6%

Table 4. Multi-layer Perceptron Performance
Accuracy Precision Recall Fi1Score

Non-Adversarial Environment 98.3% 96.5% 098.8% 97.7%
Under Adversarial Attack (FGSM) 60.2% 68.6% 45.8% 54.3%
Under Adversarial Attack (PGD) 52.3% 55.4% 32.3% 40.6%

PGD generally produces more effective adversarial examples compared to FGSM as refletcetd in Figure-4,
Fugure-5 and Figure-6. These findings highlight the importance of evaluating model robustness against
adversarial attacks and the need for developing defense mechanisms to mitigate their impact on machine
learning models used in Intrusion Detection Systems (IDS). Further research could explore advanced defense
strategies and their effectiveness in real-world applications.
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Figure 6: Performance assessment of Multi-Layer Perceptron

Logistic Regression shows a significant drop in performance under adversarial attacks, indicating higher
vulnerability. Multi-layer Perceptron performs better than Logistic Regression under attacks, but still shows
noticeable degradation. Gradient Boosting Classifier exhibits the highest resilience to adversarial attacks,
maintaining relatively better performance compared to the other models.

From the results, it is evident that all models experience performance degradation under adversarial attacks,
with Logistic Regression being the most vulnerable and Multi-layer Perceptron the most resilient. These
findings highlight the need for robust defense mechanisms to mitigate the impact of adversarial attacks on
ML-based IDS. Future work should explore advanced defense strategies and evaluate their effectiveness in
real-world scenarios.

5. Conclusion

In this study, we conducted a comprehensive comparative analysis of three machine learning models, Logistic
Regression (LR), Gradient Boosting Classifier (GBC), and Multi-layer Perceptron (MLP) under adversarial
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attack scenarios generated using a gray-box threat model. The adversarial attacks were crafted using two
prominent techniques: Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). Our
findings reveal significant insights into the robustness and performance of these models when exposed to
adversarial conditions. Under no attack conditions, all models performed excellently, with GBC slightly
outperforming the others. However, the introduction of adversarial attacks unveiled critical vulnerabilities.
The Gradient Boosting Classifier consistently demonstrated superior resilience compared to Logistic
Regression and Multi-layer Perceptron across various metrics including Accuracy, Precision, Recall, and F1
Score. Specifically, under FGSM and PGD attacks, GBC maintained higher accuracy and precision, reflecting
its robustness in distinguishing between benign and malicious network traffic despite adversarial
perturbations. Conversely, LR and MLP showed a marked decline in performance under the same conditions,
indicating their susceptibility to adversarial manipulation. This comparative analysis underscores the
necessity for robust defense mechanisms in Intrusion Detection Systems (IDS) to counter sophisticated
adversarial attacks. The superior performance of GBC in adversarial scenarios highlights its potential as a
more reliable model for IDS applications. Future research should focus on enhancing the robustness of ML
models, particularly LR and MLP, and exploring advanced defense strategies to mitigate the impact of
adversarial attacks. This will be crucial in developing resilient and reliable IDS capable of maintaining high
performance in adversarial environments.
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