
Copyright © 2021 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2021, 27(3) 1178-1183
ISSN: 2148-2403

https://kuey.net/ Research Article

Scalability Patterns for Microservices Architecture

Dileep Kumar Pandiya*

*Software Engineer, Wayfair Inc

Citation: Dileep Kumar Pandiya (2021), Scalability Patterns for Microservices Architecture ,Educational Administration: Theory and

Practice, 27(3) 1178-1183, Doi: 10.53555/kuey.v27i3.6897

ARTICLE INFO ABSTRACT

In software engineering, scalability is a key pillar when it comes to microservice
architecture, which is a big goal in large-scale complex systems. An important
part to know is the scalability patterns of microservices, which are well-rounded
and optimized for performance under different demand peaks, creating the
significance of the e-learning platform for both architects and developers alike.
With technology evolving fast, systems grow in complexity, and scalable
architectures are crucial. Microservices architecture, which is made of modular
and distributed parts, has become the preferred choice for building large-scale
programs today. Nevertheless, scaling up within the barrier of this methodology
has prerequisites of special models and tactics to be used along the process. This
article helps uncover the scalability patterns, starting with horizontal scaling as
the first pattern. Horizontal scaling, as seen at the bottom, of duties in many
instances, is still mentioned as one of the main bases of scalability in
microservices. Using comprehensive explanations on load balancing, service
instance autoscaling and database sharding in this essay, the practicality, real-
world examples and intricacies of horizontal scaling are elaborated, giving an in-
depth understanding of what it entails. Another mechanism that is critically
analyzed is vertical scaling, which is also related to scalability. Also, this might
seem like 100% contradiction to the advantages of horizontal scaling but
different in nature, vertical scaling may offer a viable solution to the scalability
challenges. Temporal database scaling and service scaling will be explained
through details around when and how they are applicable, as well as when they
are limited in a microservice environment. Another important issue in the essay
deals with elasticity: the blog discusses on-the-fly provisioning as a possible tool
for tackling demand peaks smoothly and spotlights serverless computing too. By
the application of the theoretical concepts and the practical applications, readers
are able to consolidate all the information, helping them to perceive the issue
from a comprehensive point of view, besides which case studies, contextual
cases, add a practical dimension to the discussed patterns.

Keywords: Microservices architecture, Scalability patterns, Horizontal scaling,
Vertical scaling, Elasticity patterns

INTRODUCTION

 The term scalability in the microservices architecture context refers to the system's capability of handling more
and more workloads with increasing demands without imparting any performance or stability degradation. In
Contrary to monolithic architectures, where scaling is usually achieved by merely replicating the entire
application stack, microservices present a more flexible approach by allowing individual services to be scaled
up or down as required. The fact is that it doesn’t mean that implementing scalability in microservices isn’t also
without obstacles. The scalability of microservices is impeded by the fact that they are distributed architectures
that necessitate some unique technologies. All microservices run by themselves while connecting to other
services through APIs and storing their own information in their private databases. Consequently, whereas a
strong central authority is holding the scale of pervasively connected services while preserving the system,
coherence appears to be a challenge. The scalability equation is further complicated by elements like traffic
patterns, inter-service dependencies, and different resource requirements [2]. Although scalability is noted as
a merely technical aspect, the business side of scalability should not be overlooked. The digital world has today
become the fastest and most fleeting environment; therefore, companies need to respond quickly to the

https://kuey.net/

1179 Dileep Kumar Pandiya/ Kuey, 27(3) 6897

dynamic market conditions and consumers’ needs. Scalability makes it possible for an organization to manage
firespecific and rapid increase in traffic users by expanding data sets and introducing live features and services
without interruption. Insufficient scaling based on a certain threshold in production content delivery may end
up leading to impaired performance, downtime, revenue loss, and a decline in customer happiness and loyalty
in the end. While scalability is one of the most prominent requirements in microservices architecture, patterns
of scalability are the strategic frameworks for addressing the challenges attached to the scaling of microservices.
Such patterns incorporate efficient organizational models, design concepts, and architecture principles for
scalable microservices based system evolution. Organizations may confidently manage the challenges of scaling
by implementing scalability patterns. These patterns leverage best practices and established principles to
maximize resource utilization, minimize bottlenecks, and guarantee the durability and robustness of systems
[3]. Scalability basics are the foundation that scalability in microservices architecture could eventually be built
upon, leading to overall business success and sustainable growth. Generally, organizations may fully realize the
benefits of microservices architecture and become competitive players in the ever-changing field of modern
software engineering, by comprehending the difficulties associated with scaling microservices and using
scalability patterns as guiding principles.

HORIZONTAL SCALING PATTERNS

Horizontal scaling, termed scale-out scaling, is one of the main tendencies that can be used to increase the
scalability of the microservices architecture. Unlike vertical scaling, which is about upgrading the capability of
individual components within a system, horizontal scaling is all about the multiplication of more instances of
nodes to distribute the workload among multiple resources. This way, horizontal scaling suggests some
benefits, including improved automation from faults, better resource utilization and increased load handling
with better efficiency. Nonetheless, horizontal scaling is a crucial element in microservices architecture, and is
differently affected by the factors that affect the detached services being distributed [3]. All microservices are
responsible for Maintaining business logic individually and can be distributed to particular instances. This
leads to an improvement in information density ancreases the scalability without the need for every single
resource scaling strategy. Therefore, in this case, vertical scaling is often emphasized to ensure the distribution
of the traffic is uniform across all the instances of microservices. At the same time, load balancers address this
issue by playing the role of a mediator that selectively directs client requests onto the least loaded node in the
cluster so that overall performance and resource utilization are efficiently optimized [3].

By way of illustration, given a popular e-commerce platform that experienced an increase in user transactions
during a Christmas sale, the next example is as follows. The checkout microservice can be handed over to
several instances for deployment using a load balancer. This provides the application with the capability to
make the highest use of this load, defend the application performance and, at the same time, deliver a smooth
online shopping experience for users. Furthermore, service instance autoscaling is another critical horizontal
scaling technique that allows organizations to flexibly adjust the number of service instances depending on
workload variation [4]. The autoscaling capabilities constantly evaluate critical metrics, including CPU usage,
memory utilization, and request latency, and hence can extend or decrease instances to satisfy the set
performance targets without any user manual intervention [5]. For instance, microservices dealing with tasks
that run in the background will have high demands virtually throughout the day. The effectiveness of an
organization can be transformed by using auto-scaling policies that lead to scaling additional instances during
peak hours and scaling down during the off-peak period; this helps to reduce the operation costs without
affecting the job timeliness. Also, database sharding is a pattern of scaling that targets, precisely, the
bottlenecks of data storage, in a microservices architecture [6].

Modern monolithic databases find it difficult to cope with the rise in volume and frequency of the data produced
by microservices-based applications as a result. Sharding is a type of partitioning that is done horizontally on
multiple instances (databases) or shards according to a defined criterion such as user ID or geographical locale
[7]. Celery architecture provides a mechanism of multiplexing where every shard acts independently, which
then allows to finish queries in parallel or to increase read/write throughput. We can take an example of, say,
a social media platform that may fragment its user data about different geographical regions, so localized access
can be realized and latency can be overcome for users across different locations. Consequently, horizontal
patterns of scaling are the significant evolving factors that promote the usability and performance of
microservice architecture [3]. Load balancing, service instance autoscaling and database sharding can be
strategically adopted by businesses to conduct workload distribution, improve the process of resource
utilization and enable the resilience of their systems that are microservices based. As the demand for scalable
and reliable software solutions increases, there's an urgent need in this domain to develop horizontally scalable
solutions.

1180 Dileep Kumar Pandiya/ Kuey, 27(3), 6897

Figure 1. Horizontal Scaling Process [3]

As the picture portrays, planning carefully is essential for efficiently increasing cloud infrastructure, which
includes assessing historical trends and projecting needs with stakeholders. In partnership with IT, purchase
hardware while keeping compatibility and cost in mind. Use microservices to improve resource allocation, go
for stateless apps for smooth server scaling, and make sure your application is compatible with several clouds
for flexibility. In order to effectively manage demand surges, automate scaling procedures. Additionally,
regularly monitor and enhance infrastructure performance over time.

VERTICAL SCALLING PATTERNS

Vertical scaling, commonly known as scale-out scaling, can be an alternative scaling method to address
microservice architecture scalability and high performance problems. As mentioned earlier, vertical scaling,
improves the capacity of the individual components within the system. This introduces enhancements to the
hardware resources (e.g., CPU and memory units) of a single server or the microservice instance to process
high loads [3]. One predominant scaling pattern is vertical database, which consists of adding the resources
(CPU, RAM, and storage) of a single database instance in order to improve its performance and capacity. The
most striking aspect of using this pattern is that a system’s organization has a single, centralized database for
different microservices. Using vertical scalability, organizations can simply increase the database instance
dimensions to serve growing data volumes and query traffic volumes in complex distributed databases that do
not require sharding [3]. In order to manage the growing volume of transactions and product data, an e-
commerce platform that is expanding quickly may vertically scale its database server, guaranteeing smooth
performance and scalability. Besides, vertical service scaling, which entails enhancing each microservice's
hardware or capability to handle growing workload needs [8],. This technique of running microservices may
apply to tasks that deplete resources or perform very intensive work requiring computational power. Through
a vertical scaling of specific microservice reporting issues, organizations will find technology not vulnerable to
possible performance bottlenecks and will continually stay responsive regardless of the number of instances to
manage. For example, the machine learning microservice that is responsible for image processing may need
additional CPU cores and GPU resources just to manage the image uploading during the busy hours. This
approach, however, allows for low latency even when processing images and means that the user will obtain
real-time results. Organizations should have a number of considerations to make when deciding whether to
use vertical scaling or horizontal scaling, including cost, complexity, and performance needs. The main factors
to consider while deciding between vertical and horizontal scaling are listed in Comparison Table 1 below:

Table 1. Comparison between Vertical and Horizontal Scaling.

Criteria Vertical Scaling Horizontal Scaling

Scalability Limited scalability due to hardware
constraints

Highly scalable, can handle
unlimited growth

Complexity Relatively simple, involves
upgrading hardware

More complex, requires
managing multiple instances

Cost Can be expensive, as hardware
upgrades are costly

Generally more cost-effective,
utilizes commodity hardware

1181 Dileep Kumar Pandiya/ Kuey, 27(3) 6897

Performance Suitable for resource-intensive
applications

Optimal for distributed
workloads and parallel
processing

Flexibility Limited flexibility, scaling is
constrained by hardware limitations

Offers greater flexibility, can
scale individual components
independently

Fault
Tolerance

Weak fault tolerance means that the
system as a whole may be affected
by a single point of failure.

Enhanced fault tolerance,
failures in individual instances
have minimal impact

In cases where speed and fault tolerance are critical to some applications, large amounts of horizontal scaling
are often chosen over vertical scaling. With the help of horizontal scaling (adding more computing instances),
for instance, organizations can distribute the work load and, thereby, ensure overall resilience and elastic
performance even under a varying load. Apart from that, horizontal scaling provides additional flexibility,
which means that an organization can scale some elements of its infrastructure independently, each at its own
pace based on the resource requirements for every unique component. Horizontal scaling is a cost-effective
strategy in situations where individual applications need limited additional power, while vertical scaling may
be preferred in circumstances where the stringent performance requirements of a system or the cost of
hardware upgrades call for simplicity of management. Vertical scaling is something that will come in very handy
for those applications that have been built with monolithic architectures or those that need centralized
resources. The vertical and horizontal deployment approaches are considered key patterns mobilized to achieve
scalability and enhance the performance of the new distributed architecture model of microservices. This
knowledge of the pros and cons of each method, coupled with a judicious assessment of their appropriateness
to particular use situations, offers the necessary inputs for the design of solid systems that are scalable, cost-
effective, and meet the evolving demands of modern software environments.

Figure 2. Vertical and Horizontal scaling [3].

From the figure above, Adding more nodes constitutes horizontal scaling, while boosting the power of the
current machines is referred to as vertical scaling. If the server required more processing power, for example,
vertical scaling would entail upgrading the CPUs. Additionally, a company can increase memory, storage, or
network speed while utilizing vertical scaling.

ELASTICITY PATTERNS FOR MICROSERVICE ARCHITECTURE

Elasticity in microservice architecture plays a crucial role in scalability, ensuring that modern software systems
are resilient, scalable and cost-effective. Elasticity is the system's capability to automatically adjust the number
of allocated resources in relation to changing demand [9]. As a result of this, the system can scale up or down
when the workload needs it while still providing high performance. Dynamic provisioning, which is one of the
major elasticity patterns, is capable of automatically increasing or decreasing the machine instances according
to load variation in runtime [10]. This method suits so well as it is based on the cloud computing platform as
the main area where the infrastructure is provided and infrastructure-as-code tools that can essentially create
and remove instances of virtual machines, containers or other resources at the same time. Take, for instance, a
case where an e-commerce application experiences a boom in user traffic during a flash sale event that is
characterized by limited time offer. Dynamic provisioning takes place when the application is able to establish
the increasing activity of the microservices by itself. Moreover, this approach ensures that an appropriate

1182 Dileep Kumar Pandiya/ Kuey, 27(3), 6897

number of instances of the microservices are running to handle the increasing load. On the contrary, when the
flow of traffic and excess resources are freed up, the resources are automatically decommissioned to keep costs
down. In addition to containers, serverless computing is another paradigm of cloud elasticity that has met with
a lot of success among cloud consumers [9]. Serverless platforms, like AWS Lambda and Azure Functions,
enable organizations to execute event-driven functions on-demand, responding to certain triggers or events,
without the need to manage the underlying infrastructure.

Figure 3. AWS Serverless Event-driven architecture

As portrayed in the Figure 3, AWS Lambda functions can be used as the event-driven computing service in a
serverless event-driven architecture. Code that executes in response to an event, like an HTTP request, a
database change, or a message posted to an Amazon Simple Queue Service (SQS) queue, is known as a lambda
function. Lambda functions can be used for a wide range of tasks, including real-time data processing, data
transformation and validation, and processing of images and videos.
In contrast to the usual static and scalable model, where extra resources are added to process flows, under a
serverless architecture, the right resources are to be created and billed according to actual workload This gives
an unparalleled high level of scalability. Let’s take the example of a social media platform that utilizes serverless
functions to facilitate uploads by its users. When the platform is under heavy user loads, the serverless
functions system comes into play by scaling up automatically with inbound requests, thus ensuring smooth
growth that does not require any human interference. Even though serverless computing and dynamic
provisioning have many advantages, each elasticity pattern has unique difficulties that businesses must
overcome. These obstacles include:

Dynamic Provisioning:
Complexity: An automated and orchestrated system that takes workload patterns and resource requirements
into account is a must for the implementation of agile resource provision. Managing the operational complexity
of continuously changing and large infrastructure could result in additional complexity and operational
hurdles.
Cost Management: Although dynamic provisioning offers flexibility and responsiveness, the fact is that
resource usage has to be monitored carefully in order to avoid unnecessary surplus spending. Balance and
governance are crucial for optimized resource provisioning, as otherwise, budget overruns and inefficiencies
can occur.
Performance Overhead: The act of automatic scaling and de-scaling resources will involve delays and
expenses, so systems may suffer performance issues, particularly during scaling up. Organizations need to find
a compromise between dynamic provision workflows and low latency in order to provide a responsive
environment.

Serverless Computing:
Cold Start Latency: Every serverless function incurs a temperature latency to boot up when it is invoked
for the first time or after a period of idleness because the substrate must allocate resources for the request
[13]. This latency is something that may affect the speed of response of the application, particularly for those
sensitive apps that have a time deadline.
Vendor Lock-in: A migration to a serverless platform introduces this risk of vendor lock-in since
organisations may have to stay with their preferred cloud provider to ensure flexibility and portability [14].

1183 Dileep Kumar Pandiya/ Kuey, 27(3) 6897

Vendor lock-in risks have to be duly considered, and strategies to avoid dependency on proprietary serverless
frameworks have to be developed.
Resource Limits: Serverless platforms have resource restrictions planned into them in terms of run time and
memory provisioning, which might restrict the expansion of applications [15]. Organizations should take into
account criteria such as memory limitations and efficient resource management in the design of their
serverless functions and utilize these practices to improve their performance and cost.

CONCLUSION

In this article, several scaling patterns specifically for microservices architecture have been presented:
horizontal and vertical scaling, as well as elasticity models. It had dwelt on scalability as an issue that
contributes a lot to the reliability, performance and cost savings of modern software systems. Pick up and
customize scalability patterns suitably because scalability modes directly effect system capacity to handle many
workloads and dynamic requirements. The ability to grasp the subtleties of both horizontal and vertical scaling,
as well as detailed elasticity patterns, means that firms can create a robust and scalable architecture that is
designed to handle dynamic needs better. Therefore, this work is a good foundation for practitioners to expand
their study to analyze specific scalability patterns, which are contextual and thus vary according to use cases,
and advanced techniques for scalability, including microservice orchestration, containerization, and cloud-
native architectures. Also, continuous monitoring and evaluation of scalability strategies remain on the priority
list to overcome the pitfalls and help with improved resource allocation throughout the period. In summary,
the adoption of developer-friendly design principles and the application of applicable scalability patterns allow
businesses to construct robust and ever-developing microservice architectures that supply the latest
technologies and business development.

REFERENCES

1. D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice Framework for IoT,” 2017 IEEE

Symposium on Service-Oriented System Engineering (SOSE), Apr. 2017, doi:
https://doi.org/10.1109/sose.2017.27.

2. Chander Dhall, Scalability Patterns. 2018. doi: https://doi.org/10.1007/978-1-4842-1073-4.
3. C. Qu, R. N. Calheiros, and R. Buyya, “Auto-Scaling Web Applications in Clouds,” ACM Computing Surveys,

vol. 51, no. 4, pp. 1–33, Jul. 2018, doi: https://doi.org/10.1145/3148149.
4. J. H. Novak, S. K. Kasera, and R. Stutsman, “Cloud Functions for Fast and Robust Resource Auto-Scaling,”

2019 11th International Conference on Communication Systems & Networks (COMSNETS), Jan. 2019, doi:
https://doi.org/10.1109/comsnets.2019.8711058.

5. Binildas Christudas, “Advanced High Availability and Scalability,” Apress eBooks, Jan. 2019, doi:
https://doi.org/10.1007/978-1-4842-4501-9_16.

6. D. Taibi and K. Systä, “From Monolithic Systems to Microservices: A Decomposition Framework based on
Process Mining,” Proceedings of the 9th International Conference on Cloud Computing and Services
Science, 2019, doi: https://doi.org/10.5220/0007755901530164.

7. U. Gias, G. Casale, and M. Woodside, “ATOM: Model-Driven Autoscaling for Microservices,” Spiral
(Imperial College London), Jul. 2019, doi: https://doi.org/10.1109/icdcs.2019.00197.

8. F. Klinaku, M. Frank, and S. Becker, “CAUS: An Elasticity Controller for a Containerized Microservice,” Apr.
2018, doi: https://doi.org/10.1145/3185768.3186296.

9. Rodrigo, Vinicius Facco Rodrigues, G. Rostirolla, Cristiano, E. Roloff, and Philippe, “A lightweight plug-
and-play elasticity service for self-organizing resource provisioning on parallel applications,” Future
Generation Computer Systems, vol. 78, pp. 176–190, Jan. 2018, doi:
https://doi.org/10.1016/j.future.2017.02.023.

10. Pérez, S. Risco, D. M. Naranjo, M. Caballer, and G. Moltó, “On-Premises Serverless Computing for Event-
Driven Data Processing Applications,” IEEE Xplore, Jul. 01, 2019.
https://ieeexplore.ieee.org/abstract/document/881451

11. S. Kolb, On the Portability of Applications in Platform as a Service. University of Bamberg Press, 2019.
12. E. Jonas et al., “Cloud Programming Simplified: A Berkeley View on Serverless Computing,” arXiv (Cornell

University), Jan. 2019, doi: https://doi.org/10.48550/arxiv.1902.03383.

https://doi.org/10.1109/sose.2017.27
https://doi.org/10.1007/978-1-4842-1073-4
https://doi.org/10.1145/3148149
https://doi.org/10.1109/comsnets.2019.8711058
https://doi.org/10.1007/978-1-4842-4501-9_16
https://doi.org/10.5220/0007755901530164
https://doi.org/10.1109/icdcs.2019.00197
https://doi.org/10.1145/3185768.3186296
https://doi.org/10.1016/j.future.2017.02.023
https://ieeexplore.ieee.org/abstract/document/881451

