
Copyright © 2023 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Educational Administration: Theory and Practice 
2023, 29(4), 2374-2381 
ISSN: 2148-2403 

https://kuey.net/    Research Article 

 

Innovative Water Quality Prediction For Efficient 
Management Using Ensemble Learning 

 

Madan Mohan Tito Ayyalasomayajula1* 

 
1*Computer Science, School of Business & Technology Aspen, University, USA, mail2tito@gmail.com 

 
Citation: Madan Mohan Tito Ayyalasomayajula, et.al (2023) Innovative Water Quality Prediction For Efficient Management Using 

Ensemble Learning, Educational Administration: Theory and Practice, 29(4) 2374-2381 
Doi: 10.53555/kuey.v29i4.7118 
 

ARTICLE INFO ABSTRACT 

 Water quality is of utmost importance for the health and welfare of humans, 
animals, plants, industries, and the whole ecosystem. Contamination and 
pollution have had a negative impact on water quality in recent decades. 
Ensuring the water's purity is vital for the well-being of the population and the 
long-term preservation of the ecosystem. Conventional approaches to 
monitoring and predicting water quality often lack precision and promptness. 
This study investigates ensemble machine learning methods to increase water 
quality forecast accuracy to address these issues. This method integrates 
Random Forest, K-Nearest Neighbour, and logistic regression to improve 
prediction accuracy and durability. The ensemble technique is analyzed using 
a large dataset of pH, turbidity, dissolved oxygen, and chemical contaminants. 
The results demonstrate significant improvements in predicting accuracy 
when compared to individual models, offering a more reliable tool for water 
quality management. This work showcases the efficacy of ensemble machine 
learning in producing pragmatic insights for optimizing water management 
techniques. The system attains an exceptional degree of accuracy, with a rate 
of 99.98%. Additionally, it demonstrates a high level of precision at 99.87%, 
recall at 99.67%, F1-score at 99.89%, and Matthews correlation coefficient at 
97.86%. These findings have significant implications for improving resource 
management and protecting the environment. 
 
Keywords- water quality, normalization, ensemble learning, water quality 
Index, and water management 

 
Introduction 

 
Water is an important resource upon which all forms of life rely. Water pollution causes a deterioration in the 
quality of water, which adversely affects the welfare of marine species and, therefore, the well-being of humans 
who depend on them. Hence, it is essential to oversee the water's quality and ensure the conservation of marine 
biodiversity [1]. Mitigating and managing water pollution requires understanding water quality issues. 
Environmental water management initiatives have been developed by numerous governments globally to 
comprehend the marine environment. One billion people require drinkable water, and two million die yearly 
from polluted water and poor sanitation. Thus, freshwater quality must be preserved [2]. Water quality is 
crucial to the sustainability of the diversion plan. Bad water may be costly since it needs money to restore water 
distribution infrastructure when problems emerge. The goal of ensuring safe drinking water at affordable 
prices has led to an increase in the need for improved water management and water quality control. 
Freshwater, disposal systems, and organizational monitoring difficulties need to be systematically evaluated 
in order to solve these problems [3]. Forecasting water quality involves making predictions about the changes 
that will occur in the state of health of a water system at a certain point in time. Planning and regulating water 
quality depend heavily on the results of water quality assessments. By extrapolating future advancements in 
water purification under varying pollution levels and formulating pragmatic strategies for preventing and 
managing water pollution, the efficacy of approaches for mitigating and controlling water pollution may be 
enhanced. Water diversion plans have to evaluate the general consistency of the water. A significant amount 
of water is delivered to address daily drinking challenges. As such, research needs to be done on ways to predict 
the quality of water in today's society [4]. AI and ML are crucial for security. They value knowing system inputs 
and outcomes above intricate operating processes. In order to effectively manage, regulate, and monitor water, 
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it is essential to have a good understanding of its quality. Preserving water ecosystems is crucial for doing 
research on water contamination. Therefore, a practical and efficient water quality forecasting method is 
needed. Preventing rapid water quality changes and giving solutions requires water quality forecasting. Thus, 
precise water quality projections can maintain biodiversity, control fishing productivity, and assure drinking 
water safety [7]. The standard water quality forecast method ignores biology, physics, hydraulics, chemistry, 
and weather. Researchers prioritize groundwater forecasting functionality and reliability. ANN, stochastic 
mathematics, fuzzy mathematics, 3S technology, and other techniques have improved water quality forecasts 
and broadened their applications [8]. Real-time or near-real-time predictive algorithms estimate the Water 
Quality Index (WQI) and Water Quality Classification (WQC) more efficiently and cheaply than laboratory 
analysis. This allows continuous water quality monitoring, early deterioration detection, and quick response 
to threats or pollutants. Predictive models may effectively handle such conditions by using available data and 
estimating missing values, ensuring that the WQI is generated even when the complete dataset cannot be 
immediately accessed [9]. By enhancing WQI and WQC projections, resource distribution becomes more 
efficient. Based on projected water quality categories, decision-makers may prioritize sampling, focus 
monitoring on places of interest, and enhance treatment techniques [10]. Early water quality warning systems 
may use predictive algorithms. Continuous WQI and WQC monitoring and forecasting allow for possible water 
quality issues to be identified in advance. This allows for proactive actions to minimize the effects and 
safeguard water resources. Considering this, the accomplishments of this effort may be summarised as follows: 

• Data normalization was conducted to standardize the data and facilitate further processing. 

• Utilizing ensemble models like Random Forest, K-Nearest Neighbours (KNN), and Logistic Regression to 
enhance performance in various water quality situations by selecting or weighting models depending on data 
attributes.  

In the following parts, Section 2 examines previous research investigations, Section 3 demonstrates the 
proposed object detection model, Section 4 shows the findings and discussion of the experiments, and Section 
5 concludes with the conclusion and prospective future work. 
 

Related works 
 

Machine learning is very suitable for forecasting water quality since it can detect the elements responsible for 
changes and uncover intricate correlations between variables and their anticipated results. ML models have 
been widely used in several domains. It attains a precision rate of 99.50% in forecasting WQC values. The study 
in [12] examines the feasibility of constructing an advanced monitoring system that enables water operators to 
conduct real-time quality control. ANN and other advanced pattern recognition systems, such as SVM, are 
modern sensor technologies used to detect abnormalities and assess their severity. A nine-layer MLP and KNN 
imputer are used [13] to handle missing data. The nine-layer MLP model may predict water quality with 0.99 
accuracy using the KNN imputer. The research modeled and forecasted water quality indicators using BPNN, 
RBFNN, SVM, and LSSVM [14]. The SVM predicted 99% of publicly accessible and industrial aquaculture 
system data. [15] compares G-Naive Bayes, B-Naive Bayes, SVM, KNN, X Gradient Boosting, and RF. The SVM 
was 78.96% accurate. The study conducted by IN [16] revealed that Bayesian-optimized machine learning 
achieved the best levels of accuracy of 0.992 and the Kappa coefficient of 0.987. The performance and PREI 
findings of the DT, ExT, and GXB models suggest they can efficiently and consistently anticipate WQIs with 
little model uncertainty.  
Machine learning models for predicting water quality exhibit high accuracy but face limitations such as data 
quality issues, model complexity, and interpretability challenges. Models like Random Forest and SVM achieve 
impressive results but often require extensive computational resources and can be challenging to interpret. 
Additionally, variability in environmental factors and the need for robust real-time implementation pose 
significant challenges. Ensuring accurate and reliable predictions necessitates addressing these limitations 
through improved data handling, model optimization, and comprehensive validation. Ensemble machine 
learning methods are adopted to overcome these issues, which enhance water quality prediction by increasing 
accuracy and robustness through the combination of multiple models, which mitigates overfitting and captures 
complex relationships between variables. These methods provide stable and consistent predictions, making 
them resilient to anomalies and variations in data. Additionally, ensembles can handle large datasets efficiently 
and offer valuable insights into feature importance, contributing to more reliable and precise water quality 
monitoring systems. 
 

System model 
 

Initial loading includes 30 stations and 10 features from the water sample dataset. We divide the dataset into 
X and Y for training and testing. First, the X train and X test datasets are subjected to data preparation and 
normalization. As shows that figure-1 an ensemble machine learning model uses normalization findings to 
enhance water quality prediction. 
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Figure-1 Overall block diagram for water quality prediction 

 
3.1 Dataset details 
This spatiotemporal "power of hydrogen (pH)" forecast for the next day is based on data from several water-
measurement indices. USAGS releases this data [18]. The Savannah River basin and Atlanta water system are 
given high-level geographical information. It comprises December 1, 2014–January 28, 2016 training data. It 
includes 282 days of testing data from March 25, 2017, to January 1, 2018. The pH values were estimated from 
37 Georgia water station daily samples. Spatial connectedness, or the exact linkages between locations via 
water streams, is ambiguous due to the complicated water system design. Eleven standard criteria determine 
each water station's pH, including temperature, specific conductance, and dissolved oxygen. A matrix with 37 
rows and 11 columns holds the input data. The rows are water stations, and the columns are pH-altering 
materials. The training data comprises 423 instances of spatial matrices, each with dimensions of 37 × 11. The 
dimensions of the test input are 282 units in length, 37 units in width, and 11 units in height. This provides the 
daily pH readings for 37 water stations. The training and test output data dimensions are (423 × 37) and (282 
× 37), respectively. 
 
3.2 Data preparation 
Monitoring station data includes observed values {𝑥𝑡} that are recorded at certain intervals t. Here, hourly time 
series data is collected. After data imputation, we normalize all observations inside [0,1] using the following 
approach. 

𝑋𝑡 =
𝑥𝑡−min(𝑥𝑡)

𝑚𝑎𝑥(𝑥𝑡)−min⁡(𝑥𝑡)
      (1) 

In addition, the time series is decomposed into its trend, seasonality, and irregular components using an 
additive model. Nevertheless, the research does not include the cyclic component: 

𝑋𝑡 = 𝑡𝑟𝑒𝑛𝑑𝑡 + 𝑐𝑦𝑐𝑙𝑖𝑐𝑡 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡 + 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑡   (2) 
The trend component 𝑡𝑟𝑒𝑛𝑑𝑡 ⁡at time 𝑡 shows the series' long-term development, which might be linear or non-
linear. The seasonal component 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡,  indicates seasonal fluctuations at time t. The "irregular" 
component (also known as "noise") at time t exhibits stochastic and unpredictable impacts. Occasionally, time 
series may show cyclic variations 𝑐𝑦𝑐𝑙𝑖𝑐𝑡, which are not exactly periodic. 
 
3.3 Normalization of data 
Standardizing the original data guarantees consistent magnitude, therefore allowing comparison and 
evaluation. A linear transformation that equally rescales data from 0 to 1 is minimum-maximum 
normalization, often referred to as outlier normalization. Z-score standardization is yet another approach to 
data normalization. However, Z-scores carry potential dangers. At first, the Z-score requires knowing the 
average and spread of the dataset, which might be difficult in real-world research and data exploration. 
Usually, it is replaced by the average and standard deviation of a sample. A normal distribution is the most 
suitable data distribution for obtaining Z-scores. Therefore, we opt for min-max normalization. It is more 
effective when the data contains values that are in close proximity to one another. In this investigation, the 
transformation function employed for min-max normalization is as follows: 

𝒙′ =
𝒙−𝒙(𝒎𝒊𝒏)

𝒙(𝒎𝒂𝒙)−𝒙(𝒎𝒊𝒏)
      (3) 

Water Quality Dataset Data Acquisition in Time 

series 

Normalization of Data Ensemble Machine Learning 

• KNN 

• RF 

Performance Metrics 

• Accuracy 

• Precision  

• Recall 

• F1_Score 
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Where 𝑥(𝑚𝑎𝑥) and 𝑥(𝑚𝑖𝑛) is the maximum and minimum value in the sample data. 
 
3.4 Water quality prediction process 
The dataset has two parts: training and testing. The classification model will be trained on 80% of the data. 
The testing data set, 20% of the data, will assess the model's accuracy on untested data. The first phase involves 
constructing a model by thoroughly evaluating and analyzing the data tuples from the training data, which 
consists of a set of characteristics. The need for a class label attribute is recognized for each tuple in the training 
data. Figure 2 displays the three ensemble classifiers along with a quality indicator. 
 

 
Figure-2 Ensemble machine learning classifier with water quality index block 

 
3.4.1 K-means nearest neighbor  
The KNN classifier is a popular pattern recognition algorithm due to its simplicity and power. It is also non-
parametric, meaning it makes no data distribution assumptions. It involves determining the Euclidean 
distance between test data and training data samples. Test data is then categorized by the majority of its k-
closest training data neighbors. Usually, "k" is a tiny positive integer. Differentiating across classes becomes 
harder as K increases. The best K value is chosen via cross-validation. KNN classifiers compare test data points 
to all training data points. The classifier guesses the test data point's label based on the d_1 distance to the 
nearest training class. 
 

𝑑1(𝐼1, 𝐼2) = (∑ |𝐼1
𝑝
− 𝐼2

𝑝
|)𝑝    (4) 

 
where 𝐼1⁡and 𝐼2⁡represent the vectors for points 1 and 2, respectively. Let 𝑑1 signify the distance and 𝛴 be the 
sum calculated overall points. Typically, in the KNN algorithm, the number of neighbors is represented by N, 
𝑁 samples are selected and evaluated using a certain distance metric, 
 

𝑑(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|. 1/𝑝)
𝑛
𝐼=1   (5) 

 
where p = 1 represents Manhattan distance, p = 2 Euclidean distance, and 𝑝 = ∞ Chebyshev distance.  
This is the K-NN algorithm:  

• Step 1: Input and split the dataset into training and testing sets.  

• Step 2: Select an instance from the testing sets and compute its distance from the training set.  

• Step 3: Sort distances ascendingly.  

• Step.4: The instance's class dominates the three initial training examples (k=3). 
 
3.4.2 Random forest 
RF is also a widely used supervised ML algorithm. This method applies to both classification and regression 
tasks; however, it is generally more effective in classification tasks. Additionally, it functions effectively with 
datasets of considerable size and high dimensionality. The goal is to integrate several weak learners into one 
strong learner. Ensemble learning approach RF builds numerous decision trees during training. Individual 
tree predictions define the modal class. RF consists of tree predictors that rely on a random vector selected 
separately with the same distribution for all forest trees,  

𝑒𝑛𝑡𝑟𝑜𝑝ℎ𝑦⁡(𝑠) = ∑ −𝑘𝑛[𝑔𝑓]𝑐
𝑖=1   (6) 

The RF algorithm is:  

• Step.1: Randomly selected K data points from the training set.  

• Step.2: The K data points create the decision trees.  

• Step.3: Select the desired N-tree from the created trees and proceed to repeat the first two steps.  

• Step.4: Develop an N-tree that can forecast a new data point's categorization and assign it to the most likely 
category. 
 
3.4.3 Logistic regression 

KNN 

RF 

LR 

WQI Indicator Good 

Poor 

Unsuitable 
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This approach uses the Ridge estimator multinomial logistic regression to construct classifiers. The matrix may 
be constructed as a 𝑛 ∗ (𝑐 − 1)  matrix when a dataset has c classes for 𝑚 data cases with 𝑛 variables. The 
probability for class j, excluding the final class, is computed as 
 

𝑝𝑗(𝑋𝑖) = 𝑒𝑥𝑝(𝑋𝑖𝐵𝑗)/((𝑠𝑢𝑚[𝑗 = 1,2, … . (𝑘 − 1)]𝑒𝑥𝑝(𝑋𝑖 ∗ 𝐵𝑗)) + 1)  (7) 

 
Logistic regression analyses data to find relationships between independent factors and dependent variables. 
Usually, when using this approach for predictive tasks, the input dataset consists of two potential values for 
the dependent variable (target class). Comprehending how uncertainty and model structure interact is 
essential to conduct accurate water quality evaluations. The combination of Random Forest and KNN, together 
with the iterative optimization process, enhances their robust performance but also increases unpredictability. 
The WQI is a prominent measure that influences the quality. The WQI is calculated by including many criteria, 

𝑊𝑄𝐼 =
∑ 𝑞𝑖×𝑤𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

   (8) 

 
where 𝑁, 𝑞𝑖, and 𝑤𝑖 ⁡represent the number of parameters, quality rating scale, and unit weight for parameter 𝑖 
, respectively. Equation (9) calculates𝑞𝑖, 

𝑞𝑖 = 100 × (
𝑣𝑖−𝑣𝑖𝑑

𝑠𝑖−𝑣𝑖𝑑
)              (9) 

 
where 𝑣𝑖 is the projected value for the parameter 𝑖, 𝑣𝑖𝑑 ⁡is the ideal value for pure water and 𝑠𝑖 is the standard 
value. From equation (10), 𝑤𝑖  is the unit weight, 
 

𝑤𝑖 =
𝑘

𝑠𝑖
                        (10) 

The constant of proportionality, denoted as k, is calculated using equation (11), 
 

𝑘 =
1

∑ 𝑠𝑖
𝑁
𝑖=1

           (11) 

Consequently, the quality of water is categorized as shown in Table 1. 
 

Table-1 Classification of Water Quality Level 
WQI rate Classified result 
0–50 Good 
51–100 Poor 
More than 100 Unsuitable 

 
4. Performance analysis 

 
Experimental setup—We trained the model using an 8GB Nvidia Geforce 2080 GPU. The training method 
used 100 epochs and 8 batches. This research used a personal computer equipped with an Intel Core i3 central 
processing unit and 8 gigabytes of random-access memory. Python 3.9.7 is used for classification and 
optimization. 
Performance matrix- Many performance metrics may assess water quality prediction. Performance evaluation 
methods, including accuracy, precision, recall, and Matthew's correlation coefficient, tested the 
proposed model's WQ prediction capacity. The statistical techniques are well-defined, and Equation (12) 
calculates accuracy, 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (12) 

Precision is, Eq. (13): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (13) 

Recall is, Eq (14) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (14) 

F1 score is, Eq. (15) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (15) 

MCC is, eq.(16) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (16) 
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Figure-3 Calculation of accuracy 

 
Figure 3 presents the accuracy results of various models when using 50 features. The existing RF method has 
an accuracy of 98%, while XGBoost performed with an accuracy of 98.45%, and AdaBoost showed further 
improvement, reaching an accuracy of 98.65%. However, the proposed ensemble method 
(Ens_KNN+RF+LR), significantly outperformed the other models with an impressive accuracy of 99.89%.  
 

 
Figure-4 Calculation of precision 

 
Figure 4 shows the precision scores of various models using 50 features. The Existing Random Forest (RF) and 
XGBoost both achieved a precision of 98.56%. AdaBoost was slightly behind, with a precision of 98.45%. The 
proposed ensemble method (Ens_KNN+RF+LR), outperformed the other models, achieving a precision of 
99.9%.  
 

 
Figure-5 Calculation of recall 

 
Figure 5 shows the recall scores for different models using 50 features. The existing Random Forest (RF) 
achieved a recall of 97.45%, while XGBoost recorded a recall of 98.68%, and AdaBoost demonstrated a slightly 
higher recall at 98.89%. The ensemble method (Ens_KNN+RF+LR), achieved the highest recall score of 
99.87%.  
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Figure-6 Calculation of f1-score 

 
Figure 6 shows the F1 Scores for various models using 50 features. Random Forest (RF) achieved an F1 Score 
of 98.65%, while XGBoost followed closely with an F1 Score of 98.6%. AdaBoost performed slightly better, with 
an F1 Score of 99.2%. The ensemble method (Ens_KNN+RF+LR) achieved the highest F1 Score of 99.56%.  
 

 
Figure-6 Calculation of MCC 

 
Figure 6 shows the Matthews Correlation Coefficient (MCC) scores for various models using 50 features. 
Random Forest (RF) and AdaBoost both achieved an MCC of 87.56%, indicating a moderate level of 
performance. XGBoost demonstrated a higher MCC of 92.56%, reflecting improved correlation between the 
predicted and actual classifications. The proposed ensemble method (Ens_KNN+RF+LR) achieved the highest 
MCC of 97.45%.  
Table 2 displays the existing RF, XGBoost, AdaBoost, and proffered Ens_KNN+RF+LR classification models 
by performance.  
 

Table 2. Performance of the existing and Proffered method 
Parameters Accuracy Precision Recall F1-score MCC 
RF 98.01 97.92 97.92 97.92 87.52 
XGBoost  98.31 98.21 98.24 98.25 90.55 
AdaBoost 98.12 98.03 98.05 98.03 87.93 
Proposed Ens_KNN+RF+LR 99.98 99.87 99.67 99.85 97.56 

 
Conclusion 

 
Recent environmental factors have resulted in water pollution, leading to detrimental impacts on human 
health and the emergence of several complex diseases. Therefore, the ability to forecast water quality is crucial 
for ensuring the survival of the human species. Ensemble machine learning approaches have shown significant 
promise in improving water management via water quality forecasting. By incorporating the strengths of 
multiple models, the proposed Ens_KNN+RF+LR has demonstrated enhanced accuracy and robustness in 
predicting complex water quality parameters. This approach not only reduces the risk of overfitting but also 
ensures better generalization across different water bodies and environmental conditions. Furthermore, timely 
and accurate forecasts are supported by the integration of several data sources, such as historical records and 
real-time sensor data, which helps with proactive decision-making for pollution control, water treatment 
optimization, and guaranteeing a safe water supply. Future work should focus on enhancing model scalability, 
incorporating more diverse datasets, improving real-time data processing capabilities, and exploring hybrid 
models that combine machine learning with domain-specific knowledge to further refine prediction accuracy 
and operational effectiveness. 
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