
 

Copyright © 2023 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Educational Administration: Theory and Practice 
2023, 29(4), 2849-2857 
ISSN:2148-2403 

https://kuey.net/     Research Article 

 

AI-Powered Insights: Leveraging Machine Learning And 
Big Data For Advanced Genomic Research In Healthcare 

 

Venkata Nagesh Boddapati1*, Eswar Prasad Galla2, Gagan Kumar Patra3, Chandrakanth Rao 
Madhavaram4, Janardhana Rao Sunkara5 

 
1*Microsoft Sr. Technical Support Engineer,  venkatanageshboddapati@yahoo.com 
2Sr. Technical Support Engineer, EswarPrasadGalla@outlook.com 
3Sr. Solution Architect, gagankumarpatra12@outlook.com 
4Microsoft Sr. Technical Support Engineer, Craoma101@outlook.com 
5Sr. Database Engineer, JanardhanaRaoSunkara@outlook.com 

 
Citation: Venkata Nagesh Boddapati et al. (2023), AI-Powered Insights: Leveraging Machine Learning And Big Data For Advanced 

Genomic Research In Healthcare, Educational Administration: Theory and Practice, 29(4), 2849-2857 
Doi: 10.53555/kuey.v29i4.7531 
 
ARTICLE INFO ABSTRACT 

 AI-powered insights are becoming increasingly essential in every industry. The 
cost of doing genomic science is becoming comparable to 'big data' requirements, 
leading to a need for data-driven insights. This essay will investigate how AI-
powered insights can build and expand the data-rich and bias-free genomic 
insights needed in healthcare, with a particular focus on DNA collection and 
genomic DNA-based healthcare research. Many challenges will be discussed 
during this paper should the data ecosystem be expanded to include many more 
humans worldwide or focused on the increasingly complex data types associated 
with post-genomic healthcare. We will also explore the AI methods likely to make 
significant breakthroughs in the future and will need further investment. 
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1. Introduction 

 
In the era of technological transformation, artificial intelligence (AI), machine learning (ML), and big data have 
become game-changers, leading to innovative solutions across several different applications. Through AI-
powered technologies, patient outcomes can be improved by automating the integration of genomic data into 
standard clinical workflows and decision support systems. This paper therefore introduces the relevance and 
importance of AI and machine learning in the background of advanced genomic exploration in healthcare. The 
first objective of this paper is to provide an understanding of the state-of-the-art AI and machine learning 
models applied in genomic research, while the second objective is to address the sources and importance of big 
data in genomic research. In the following sections, we start by outlining the motivation for advancing genomic 
research in the healthcare sector through the use of artificial intelligence and machine learning models. We 
point out the key aspects of the application of machine learning models in the background of genomic research 
and provide a short conceptual definition of big data in the healthcare sector.In the era of technological 
transformation, the integration of artificial intelligence (AI), machine learning (ML), and big data has 
revolutionized healthcare, particularly in genomic research. This paper delves into how AI and ML models are 
transforming genomic exploration by automating and enhancing the integration of genomic data into clinical 
workflows and decision support systems, ultimately improving patient outcomes. The first objective is to 
elucidate the cutting-edge AI and ML models currently utilized in genomic research, showcasing their 
capabilities and impact. The second objective highlights the critical role of big data in genomic studies, 
exploring its sources and significance. By examining the motivation for leveraging these technologies, the paper 
outlines how AI and ML are advancing genomic research and provides a foundational understanding of big 
data's conceptual framework in the healthcare sector. 
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Fig 1 : Big Data Analytics in Healthcare 

 
1.1. Background and Significance of Genomic Research in Healthcare 
Among the countless methods imagined or adopted to drive this particular form of postgenomic research, AI 
approaches hold contexts with an extensive and widely applicable approach. Here, a tacit use of AI is to further 
mine and extract in silico knowledge from our genetic and phenotypic data at a much larger scale using 
extensive input data sources and relatively many free parameters for potential novel insights unavailable to 
smaller-scale and more hypothesis-driven projects. We describe the computation-intensive AI and machine 
learning methods that, as we see it today, are most widely applicable. Agent-based approaches are tailored for 
applications where learning matters, e.g., when wanting to model the behavior of molecules or cells in rich, 
biologically realistic in vitro systems with other cells or tissues. These approaches span from "simplified" 
phenomenological models to more complex dynamical systems-based individual-based models, including 
reaction-diffusion models. 
With the arrival of big data and new insights from genetics and genomics, there is reason to expect that 
healthcare will be revolutionized once again. When Mendel's foundation of genetics was joined with the 
superabundant hypotheses that came from molecular biology, scientific and commercial narratives were spun 
about a not-so-distant future in which advanced diagnostics would enable doctors to apply precise therapies, 
or so-called "precision medicine" or "personalized medicine," to stave off or cure late-stage diseases as capably 
as high-quality healthcare today deals with early stages of non-communicable diseases like diabetes or 
hypertension. Adopting the term proposed by Calum Macleod, we call these imagined applications of genetic 
and genomic research "genomic research in healthcare," meant to draw attention not only to their work on the 
genome but also to the embodied and material ways and layered technical infrastructure through which the 
genome gets put to work. 
 
1.2. Role of Machine Learning and Big Data in Advancing Genomic Research 
Big data crosses all social, economic, regulatory, and technological barriers. In the healthcare/social sector, it 
is important that the vast amounts of 'valuable' data are properly protected and of the utmost quality to 
facilitate enhanced connectivity for data sharing and insights; it is the fuel that drives innovation and it has 
been making waves across all industries related to biostatistics and business intelligence. Genomic big data has 
the potential to improve the scientifically derived insights from such machine learning research across a wide 
range of disciplines to facilitate quick and accurate implementation into healthcare for the benefit of patients 
and advancements in research. Machine learning and big data offer unparalleled potential to impart cutting-
edge technological breakthroughs that enable healthcare professionals to make accurate assessments and gene-
level predictions based on an individual's symptoms and genetic situation. Machine learning is especially suited 
to synthesize the vast amount of information doctors and biologists have about what genes are connected to 
which diseases in a way that is beyond human capability. Machine learning applications will enable clean data 
from controlled laboratory variables such as specific genotypes and/or experimental treatments, real-world 
healthcare data, and registries from different hospital systems to be accessed and combined at scale. This will 
result in expensive, resource-limited, and time-consuming clinical trials becoming greatly enhanced, which will 
better reflect the true human genetic landscape. Big data transcends social, economic, regulatory, and 
technological boundaries, playing a pivotal role in the healthcare and social sectors by ensuring that vast 
quantities of valuable data are protected, high-quality, and effectively utilized. In the realm of genomics, this 
data serves as a critical driver of innovation, enhancing connectivity for data sharing and facilitating advanced 
insights across biostatistics and business intelligence. Machine learning, leveraging genomic big data, has the 
potential to revolutionize healthcare by enabling precise assessments and gene-level predictions tailored to 
individual genetic profiles and symptoms. This technology surpasses human capability in analyzing complex 
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gene-disease relationships and integrates diverse data sources, including controlled laboratory data and real-
world healthcare records, on an unprecedented scale. The synergy between machine learning and big data 
promises to significantly refine clinical trials, making them more efficient and reflective of the intricate human 
genetic landscape, ultimately advancing patient care and research outcomes. 
 

2. Foundations of Machine Learning 
 
Regardless of the drawbacks, several "core" stakeholders have remained interested in AI-driven healthcare 
knowledge, perhaps through a proprietary investment in this technology, which makes this study relevant to 
the healthcare sector from their perspective. Another concept that has gotten a lot of attention is "machine 
learning". Although it has been shown that machine learning technology may significantly impact healthcare, 
these conclusions have not fully covered the growing field of genomic research. Machine learning is a kind of 
artificial intelligence in which computers are trained to make sophisticated judgments using two possible 
learning types: supervised and unsupervised. The "training" of a model is what happens when a machine learns 
with this sort of AI. In the context of this study, a model learns how to link somebody's DNA to a medical 
condition, when previously this can be related to the incidents of hundreds or thousands of other people. Once 
trained, the model will be used to make forecasts for customers that it has never studied before.The human 
body, with around 100 trillion cells, is like a machine that functions by converting food into power. Medical 
professionals think of the body's data that powers this complicated "machine" like one's DNA. All medical 
ailments, from advanced cardiovascular disease to rare situations such as rare diseases, are allegedly caused by 
mutations or problems in the person's DNA that powers this complicated "machine". By comprehending these 
DNA mutations, treatment methods can be customized for each patient, enabling treatment that is catered to 
every patient's body, eliminating elements that don't apply, and providing higher precision with fewer adverse 
effects in drug interventions or surgical procedures. These results show that genomic research has the potential 
to significantly improve how millions of individuals are treated. Healthcare genetic research has grown quickly 
in recent years, yet it is still not widely available to the public. Currently, it has mostly been used by people 
working in hospitals or institutions and needs to be incorporated into healthcare for all patients to receive the 
benefits of this research. 
 

 
Fig 2 : Pillars of machine learning for healthcare services 

 
2.1. Basic Concepts and Terminology in Machine Learning 
As such, a fundamental question in machine learning is how to learn the model from the data to make accurate 
predictions while simultaneously minimizing the error rate. Traditional machine learning algorithms, used in 
the development of classification or prediction models, are primarily categorized into supervised versus 
unsupervised learning methods. In supervised learning, the algorithm establishes a relationship between the 
set of descriptors or predictors (features) and a binary or continuous response in the training dataset. The 
model is then able to make predictions about this relationship for new instances. In the case of unsupervised 
learning, the machine learning task is centered around finding structure in the data and is typically used for 
applications such as clustering data or reducing data dimensionality.Machine learning refers to a field of study 
devoted to modeling algorithms that can automate the discovery of patterns and associations from large 
databases and subsequently leverage these insights to make intelligent decisions or predictions. The designed 
algorithm is typically represented as a model, which itself is a function that takes as input a set of attributes 
(features) and produces as output a response. This response may constitute an association or a prediction of 
the input data. To develop the data-driven model, machine learning practitioners typically require a dataset 
containing both the input features and corresponding responses for a large number of instances. This dataset 
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is subsequently divided into a 'training set' and a 'test set', where the training set is used to fit the model, and 
the test set is used to assess the model performance.A core challenge in machine learning is designing models 
that accurately predict outcomes while minimizing errors, with methods broadly categorized into supervised 
and unsupervised learning. In supervised learning, algorithms are trained on datasets where input features are 
paired with known responses, enabling the model to establish predictive relationships and make accurate 
forecasts for new data. Conversely, unsupervised learning focuses on uncovering underlying structures within 
data, such as clustering or dimensionality reduction, without predefined labels. Machine learning encompasses 
the development of algorithms that can autonomously detect patterns and associations within large datasets, 
leveraging these insights to drive intelligent decision-making or predictions. Typically, this involves 
constructing a model—a function that processes input attributes to generate outputs, which might be 
predictions or associations. To build these data-driven models, practitioners use a dataset split into a 'training 
set' for model development and a 'test set' to evaluate performance, ensuring that the model generalizes well to 
new, unseen data. 
 

3. Big Data in Genomic Research 
 
Beyond these operational challenges, the management and meaningful analysis of genomic data has created a 
significant opportunity cost over the past decade. However, if these can be overcome, as a community, we have 
the opportunity for a large increase in manual curation capability and translational articles published – 
potentially increasing from zero in 2019 to ~650 articles by the end of 2020. Conversely, the current impact 
factor of CCR has an estimated value of $51m, which is expected to increase linearly by $26m over the next 
year.As we discover more about the relevance of the low-frequency variants found in an individual's germline 
and/or somatic tissues, the sophistication of tools required to extract and interpret these will, by necessity, 
increase. Long-term data analysis challenges include population density and diversity variations, the 
correlation between pathogenicity staging scores (e.g., ACMG classification and/or NCCN guidelines staging) 
and therapeutic options, drug-to-drug interactions, drug metabolism analysis from germline variants, and 
'other' (unstructured) genetic influences (including lifestyle, environment, and the microbiome).Handling Data 
Volumes The volume of sequencing data in and of itself presents challenges in terms of analysis, storage, 
transmission, and processing. As challenges scale linearly, storage and analysis can become impractical.The 
widespread usage of next-generation sequencing has enabled the creation of unprecedented volumes of 
genomic data in research laboratories and healthcare institutions. DNA sequencers have collectively generated 
nearly 400 exabases of sequence data from approximately 176 million individual samples over the last ten 
years. Beyond the generation and storage of this dataset, researchers are facing a complex array of challenges 
to transform this information into more usable and increasingly clinically actionable knowledge and insights. 
 

 
Fig 3 : Genomic Data and AI in Healthcare 

 
3.1. Challenges and Opportunities in Handling Genomic Data 
The large datasets used in genomics also display a major opportunity: a large-scale phenotypic and genomic 
study of a population has the potential to yield statistically significant results and thus set precedence. If a 
biomarker is identified as statistically significant, it is suggested that such a biomarker could be an example of 
how many other patients with that particular genotype may react, due to the large number of patients 
researched. Furthermore, if the discovery is repurposed, showing or yielding necessary evidence can result in 
quick invalidation of a badly performing medical procedure. This means that a breakdown in the model can be 
addressed immediately if it occurs on a large scale the conditionality of such a model which is only possible 
with big data.The true promise in handling large-scale genomic datasets lies in the data value management 
gained from analyzing them. Genomic data is complex, and handling it presents new challenges. The primary 
challenge is that they are large. Huge datasets can originate from the new increasingly large cohort studies. For 
example, data from the UK Biobank or the Million Veterans Program exceeds the petabyte. While storage 
systems could (in theory) scale to such sizes, problems may also arise due to the computational demand. Data 
may have to be split during the execution of computations, and as such individual computational units need to 
rely on one another within the computer to complete individual steps. This can result in delays due to transfer 
time, thus compounding computational time as tasks cannot be executed in parallel. For example, a typical 
genome-wide association study (GWAS) of relatively modest size (e.g. 1 million variants and 10 million 
participants) can still require the storage of 20TB of data and hundreds of thousands or millions of 
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computational tasks (one for each variant). This results in significant computational time. A significant 
technical challenge involved in complex cloud computing environments requires tools to be developed to 
support these complex analytical workflows. 
 

4. Applications of AI in Genomic Research 
 
The impetus of integrating big data and AI in genomics is often aimed at improving patient care by providing 
comprehensive solutions for patient GPs, thereby allowing them to make better treatment decisions. Moving 
to the clinical aspect, a unique resource populated with machine learning methods performed on genetic data 
is nested within databases such as the UK Biobank the UK has the capacity for large numbers of penetrant 
Mendelian diseases, such as pathogenic and likely pathogenic BRCA1 and BRCA2-coding mutations. Given the 
significant overlap of germline TBVs and breast cancer predisposition genes, it is fundamental to adopt 
appropriate statistical measures (validation and cross-validation datasets) to not introduce confounding effects 
into machine learning predictions. This new model, connected with advanced MRI interpretation via 
convolutional networks, has the potential to revolutionize pre-treatment assessment as logistic regression 
combining radiomic, genomics, and clinical data already achieves a marked improvement over using each 
component alone.The use of advanced AI and big data technologies in genomic research is primarily aimed at 
the advancement of precision medicine. Precision medicine encompasses personalized and stratified drug 
treatment and can significantly enhance an individual patient's advancement through their recovery from 
disease. Indeed, this particularly has implications for chronic conditions such as cardiovascular disease, cancer, 
and neurological disorders. The current gap highlighted in the literature is the functional interpretation of the 
large variety of data sources currently available. Therefore, the research avenues associated with AI-powered 
insights mainly fall into the established frameworks of genomics and precision medicine, particularly for cancer 
research.Integrating big data and AI into genomics has the transformative potential to significantly enhance 
patient care by enabling more precise and individualized treatment decisions. This integration is particularly 
impactful in the clinical realm, where databases like the UK Biobank, which contain extensive genetic 
information including Mendelian disease markers such as BRCA1 and BRCA2 mutations, serve as rich 
resources for machine learning applications. By employing advanced statistical methods to validate and cross-
validate datasets, researchers can mitigate confounding effects and refine machine learning models. These 
models, when coupled with sophisticated MRI interpretation techniques using convolutional neural networks, 
can revolutionize pre-treatment assessments. Combining logistic regression with radiomic, genomic, and 
clinical data has already demonstrated superior outcomes compared to isolated data sources. The overarching 
goal of these advancements is to propel precision medicine forward, particularly in the management of chronic 
conditions like cardiovascular disease, cancer, and neurological disorders. Despite these strides, a critical gap 
remains in the functional interpretation of diverse data sources, underscoring the need for continued research 
within the frameworks of genomics and precision medicine to fully leverage AI-powered insights. 
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Fig 4 : AI applications in functional genomics 
 
4.1. Precision Medicine and Personalized Treatment 
This subsection shows examples of applications for personalized treatment in the context of diseases like 
epilepsy, pediatric polyarticular juvenile idiopathic arthritis, mental disorders, and other inflammatory 
diseases. In some cases, these AI-driven models resulted in better disease management and therapeutic 
response by shifting the focus from symptoms/clinical presentation to underlying mechanisms or pathways 
known to cause disease. 
Precision medicine aims to provide custom-fit healthcare solutions to an individual based on their unique 
genomic makeup. Today, both precision medicine and artificial intelligence have advanced significantly, which 
allows for an integration of these two fields. Genomic predictive models based on AI hold the promise of early-
stage disease detection by analyzing large volumes of genomic data and learning patterns that hint at the onset 
of disease long before physical symptoms are present.Precision medicine involves custom-fit healthcare 
solutions based on individual genomic signatures, resulting in a shift away from "one-size-fits-all" clinical 
approaches. The AI power of learning from large and complex genomic datasets combined with clinical 
outcomes allows researchers to discover the often subtle interconnections between the smallest of DNA 
variations and the manifestation of life-threatening diseases. We include several applications of AI in the field 
of precision medicine for different life-threatening diseases: cancer, rare diseases, cardiovascular diseases, 
COVID-19, autoimmune diseases, and genetic pain disorders. 
 

5. Ethical and Regulatory Considerations 
 
There are currently several frameworks existing, such as the General Data Protection Regulation (GDPR), that 
address the responsible use and sharing of data, especially genomic data, about a balance of fair data 
exploitations, knowledge development, and respect for privacy rights. In the present context, decision support 
systems that generate insights could be perceived as instrumental AI-driven systems that serve a function and 
have a pertinent impact on clinical practice, enhancing patient outcomes. Each of these aspects requires 
rigorous definition to resolve potential ethical, legal, and social implications of the operationalization of the 
results of such genomic research. Any databases collected from contextual partners would also require data to 
be within a de-identified form. Data protection has multiple facets, and this aspect also needs to be detailed 
further.The potential applications of AI-powered insights sparked numerous ethical, legal, and social 
discussions related to the unintended use of these systems in the context of genomic research. These are highly 
relevant to be addressed as new and innovative knowledge and practices in research are typically adopted by 
the scientific community on the one hand, while also being applied and integrated into medical practice on the 
other. Due to the complex systems predominantly used for the generation of data or analyses of large-scale 
biological data with emphasis on different management of privacy of data, privacy and data security aspects 
also need to be considered from an economic perspective since the breach of data could also lead to economic 
consequences. 

 
Fig 5 : Ethical and regulatory challenges of AI technologies in healthcare 

 
5.1. Privacy and Data Security in Genomic Research 
Concerns with data security and genetic privacy are very much a major theme when it comes to integrative AI 
and machine learning applications in radiomic and genomic research, especially regarding the vast biomedical 
data repositories and other clinical networks in which there may be a possibility to carry out studies at a mass 
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scale. Databases containing electronic and health record information typically already make sure to secure 
participant privacy and individual data with the Health Insurance Portability and Accountability Act (HIPAA) 
and/or local equivalent laws, and the individual studies themselves undergo IRB review to confirm the best 
possible measures in securing data from entrance to execution are taken. However, the entire swathes 
dedicated to large-scale genomic data analysis - which in some cases are composed of collected patient cohorts 
with more than 50,000 participants amassed over decades and genome-wide genotyping appearing in 
duplicated clinical and annotated datasets numbering in the thousands - must adhere to a piling set of 
interventions above and beyond routine clinical and research trials. This international set of directives so far 
has been the general data protection regulation (GDPR) in Europe.As contemporary genomic research becomes 
more dynamic, all-encompassing, and steered by machine learning and AI, we should adhere to several 
conceptions and directives in the field of privacy and data security. All genomic research conducted nowadays 
should involve a focused effort to protect the privacy, consent, and insurance of their human participants and 
should also bear in mind the innumerable elders and nonwhite general population that have systematically 
been failed by every evolution of contemporary bioethics. The idea that there neither is nor should be an 
"ethical" or a "legal" reason for a person to expect secure processing of their genomic information flies in the 
face of legislation such as Europe's General Data Protection Regulation (GDPR). It corresponds to a philosophy 
of data handling and informatics in which the basic human right to privacy has no place - a philosophy that 
now, more than ever, needs to be swept off its throne entirely.Data security and genetic privacy are paramount 
concerns in the integration of AI and machine learning with radiomic and genomic research, particularly when 
dealing with extensive biomedical data repositories and clinical networks. While databases containing 
electronic health records adhere to regulations like the Health Insurance Portability and Accountability Act 
(HIPAA) in the U.S. or similar local laws, and individual studies are reviewed by Institutional Review Boards 
(IRBs) for robust data protection, large-scale genomic analyses present additional challenges. These studies, 
often involving extensive patient cohorts and genome-wide data spanning decades, must comply with stringent 
regulations such as Europe's General Data Protection Regulation (GDPR). As genomic research increasingly 
relies on dynamic, AI-driven approaches, it is crucial to prioritize privacy, consent, and the protection of 
participants, especially marginalized groups who have historically been underserved by bioethics. The evolving 
landscape of data handling should reject any notion that secure processing of genomic information is not a 
fundamental right, aligning instead with a philosophy that upholds the basic human right to privacy in the face 
of expanding technological capabilities. 
 

6. Conclusion 
 
In the future, a likely possible advancement to occur in the big data subset is the inclusion of lifestyle data (e.g., 
socioeconomic status, stress levels, exercise levels, diet, community, and family relationships) in conjunction 
with both longitudinal health and genomic data, which will impact the above functionalities and allow for 
analyses associated with personalized preventive precision and the impact of disease on genomics. Numeric 
proximity to the developmental genesis of these developments, though no further specification has yet been 
proposed, has been established. All of these trends reflect a 'real-world' confluence of fields typically siloed and 
how, in the new integrated world of big data and artificial intelligence learning platforms, they are emerging to 
deliver insights into the nature of illness and how to personalize care to alleviate patients from disease. Analysis 
at the genetic level, therefore, is likely just one component of the delivery of genetic data analysis.In conclusion, 
highly sophisticated AI-powered insights have been established, and their potential to catalyze advancements 
in research targeted at achieving significant improvements in healthcare has been demonstrated. The 
application of machine learning has allowed big data to emerge as a valuable asset in genomic research and a 
broadening array of studies reflective of the meaningful roles machine learning and big data are playing in 
healthcare innovations. The intersection of these developments in the AI, big data, and genomics fields presents 
promising advancements across several critical areas, particularly in providing early detection for diseases 
including cancer, and in effective diagnosis, high individualization of therapeutics, and patient engagement 
through behavioral analysis. Additional applications of technologies are emerging in demonstrating 
compliance in drug development, identifying new drug targets, and determining the intent behind 'dark' DNA, 
which makes up the vast majority of the human genome yet has no known function. 
 
6.1. Future Trends 
Large-scale big data collection in a way that respects privacy would open the artificial intelligence black box, 
thus encouraging public and medical practitioner trust. There will probably not be any added constraints on 
machine learning/AI performance with the incorporation of even more data (possibly artificial) sources, and 
DNA-encoding data could be one of these sources. Genetics and epigenetic data are not only about personal 
information, but also about children, grandchildren, and many other potential family members. Therefore, 
legal and privacy issues are central in matters of safeguarding society and not just individuals. The complex 
interactions between genetic and epigenetic expression differ from person to person, depending on family 
background, environment, and lifestyle. For these reasons, the same food may lead to obesity in one person 
and be beneficial for another. 
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The probabilities of using AI-powered genomics research in healthcare are infinite. Although they investigated 
the complete mitochondrial genome, the next generation of genetic researchers will probably go beyond this 
level, focusing on the complete genome or epigenome. These approaches would provide disease-specific risks 
(e.g., obesity risk) and large quantities of drug-response pathways that would pave the way for personalized 
medicine. Moreover, these vast sets of multi-omics data are a foundational aspect of the precision medicine 
practices of the future and must be tied to many groups of patients for AI meta-analysis to become truly 
relevant. Some investigation schemes include the evaluation of diet, genetic heritage, age, and life habit 
information, along with disease onset and progression for common diseases spanning large-time periods. 
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