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1. Introduction 

 
Given its substantial workforce and revenues of 710 billion euros in 2008, it is indisputable that the 
automotive industry holds a significant position within modern economies. Globally, 912.7 million 
automobiles were in operation in 2008. Of these, 334.8 million were in Europe, 283.2 million in the Mexico, 
United States and Canada, and an additional 33 million were dispersed across other regions (see ANFIA 
2010, EUROSTAT 2010). 
The quantity of automobiles sold is still rather high, even if the global economic crisis of 2008 occurred. 
There were 18.4 million new motor vehicle registrations in Europe in 2009, with 16.4 million cars and 2 
million industrial and commercial vehicles. Also, that year, 12.8 million new motor vehicles were registered in 
North America, with 6.6 million cars and 6.2 million trucks and other commercial vehicles making up the 
total. China, Russia, India, and Brazil all saw very large rises. 
Optimization methods work well in the automotive industry because of the high volume of sales and the big 
swings in the market. One of the most critical logistical challenges in this industry is getting autos to dealers, 
but this is also a great potential for optimization. The subject matter of this paper is this. 
In most cases, logistics providers are relied upon rather than the vehicle manufacturers themselves when it 
comes to product delivery. These businesses get the cars from the manufacturers, put them in storage, and 
then send them to the dealers when the dealers place an order. Specialized vehicles, known as auto-carriers or 
auto transporters, make the deliveries. These trucks typically have a tractor and a trailer, with the latter 
having upper and lower loading platforms. Figure 1 depicts a standard European autocarrier with four 
loading platforms that can accommodate seven vehicles. The typical number of loading platforms for normal 
autocarriers is four, though they can range from one to two. While all of the trucks in Figure 1 are the same 
type, in reality, loadings sometimes include a fleet of different vehicles. 
The size and weight of the cars have a significant impact on the auto-loading carrier's capability. Since auto-
carriers cannot accommodate vehicles in a side-by-side configuration, the width is a completely irrelevant 
feature compared to the length, height, and shape. Vehicle carriers often have specialized loading equipment 
to enhance their carrying capability. The top loading platforms, for instance, can be rotated and/or vertically 
translated. The length of the platforms can be adjusted by extending both the upper and lower ones. Loading 
auto-carriers typically begins in the back, and unloading without rearranging freight is typically mandatory, 
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as the last-in-first-out (LIFO) policy is enforced. To clarify, the vehicle positioned at the lower rear portion of 
the cargo will be emptied initially, as illustrated in Figure 1. 
 

 
Figure 1: Pictured Here Is an Auto-Carrier Hauling Seven Vehicles 

 
In addition to maximum height, weight, and length, transportation regulations establish a variety of other 
loading standards. These regulations vary from country to country (The U. S. D. T; 2004). Consequently, 
putting the vehicles onto an auto-carrier is a difficult undertaking akin to a specific two-dimensional loading 
issue characterized by a multitude of complex constraints. 
Routing becomes a challenge due to the dispersion of dealers over considerable distances; also, a single dealer 
order rarely completely occupies the capacity of an integer number of vehicle carriers. This is why businesses 
have little choice but to combine orders from various dealers into a single vehicle carrier. Because of this, 
finding the best route for auto-carriers is likewise not easy. 
One of the most prominent players in Italy's car delivery business commissioned us to write this paper 
detailing the algorithm we created to solve a real-world problem for them. Here is an explanation of the main 
issue: 
One of the most prominent players in Italy's car delivery business commissioned us to write this paper 
detailing the algorithm we created to solve a real-world problem for them. Here is an explanation of the main 
issue: 
Combining two NP-hard issues from the domains of loading and routing generates a complex combinatorial 
issue. Furthermore, the issues we tackle are of an enormous magnitude: as the examples demonstrate, eighty 
auto transporters deliver 800 autos to two hundred merchants daily. We opted for a heuristic approach since 
logistics companies require answers discovered in minutes, However, even for scenarios involving 100 
clients, existing accurate techniques for the simpler CVRP (capacitated vehicle-routing problem) require days 
of computations. 
We implemented eight different inner local search algorithms into our iterative local search method. These 
methods always call a loading algorithm whenever they need to assess a route's loading capability. An 
approximated model of the initial two-dimensional problem is used to solve this approach through an 
implicit enumeration technique. 
We present a mathematical model and strategy for solving the loading subproblem, followed by a nontrivial 
heuristic for solving the total problem, in this study. The final algorithm is the first of its kind to 
simultaneously manage loading and routing for auto-carrier transportation, hence providing comprehensive 
solutions. It provides an accurate vehicle-platform assignment for each auto-carrier in order to give a realistic 
loading and delivery sequence. Features that take advantage of the problem's complex structure are included, 
and their efficacy is demonstrated through comprehensive testing on real-world examples. Our system is 
easily transferable to other markets, even if we primarily focus on the Italian market. 
 

2. Description of the Problem 
 
Here, "vehicle" refers to any object being transported, "auto-carrier" to a truck that transports autos, and 
"dealer" to a location where delivery is made. The following is a description of the very involved input that we 
are given: 
Network: The full graph 𝐺 =(𝑁, 𝐸). Here, the collection of vertices is 𝑁={0,1, 2,…,𝑛} and E is the well-defined 
collection of edges that connect each pair of vertices. The depot is represented by vertex 0, while the n 
dealers to be served are represented by the vertices {0,1, 2,…,𝑛}. The (𝑖, 𝑏) symbol represents the edge that 
joins vertices I and j, and the corresponding routing cost is  𝑐𝑖𝑏. (𝑖, 𝑏 ∈𝑁). In addition to being symmetric, 
the cost matrix also satisfies the triangle inequality. 
Fleet: We are presented with a diverse fleet of auto carriers, consisting of a set T of different sorts of auto 
carriers. Every type of auto-carrier, denoted as t, belongs to the set T and is composed of Pt loading 
platforms. Its maximum weight capacity is denoted as 𝑊𝑡. Each type t has its own set of auto-carriers. 
In cases when there is no room for ambiguity, we designate auto-carriers and their respective types using 
index t, and vehicles and their related models using index k. 
Given the typical intricacy of modern practical routing difficulties, the idea of a route is likewise rather 
intricate, and this is especially true for the situation we are addressing. Here, a route is defined using the 
triplet, 〈𝑅, 𝑆, 𝑡〉. 
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• 𝑅 ⊆ 𝑁 is the order in which to visit the dealers along the way. 

• 𝑆𝑖 ⊆ 𝑀𝑖 is the group of cars that will be sent to the dealer 𝑖 ∈ 𝑅 with help of this route, and 𝑆 = 𝑆𝑖 ∪
… ∪ 𝑆|𝑅| is going to be supplied in its entirety. 

• "t" denotes the auto-carrier type of the route. As one travels along a path, 〈𝑅, 𝑆, 𝑡〉 an auto-carrier of 
type t departs from the depot with autos in S, makes stops at the dealers in the order specified by R before 
heading back to the depot empty-handed. To calculate the cost of a route, add up all the edges it goes through. 
To determine the sequence of vehicle deliveries along the route, we also employ a function 𝑓: 𝑆→{1,…, |𝑅|} in 
what follows. Every vehicle 𝑘 (𝑘∈𝑆) that R's initial dealer must have (𝑘)=1, For each car that the second R-
dealer desires, 𝑓(𝑘)=2, etc. 
A route 〈𝑅, 𝑆, 𝑡〉 meets the following criteria, it is deemed load viable. 
i. As shown as, the sum of all automobiles in S must not be heavier than the auto-carrier t's maximum 

permissible mass (z ). 
ii. The vehicles in S can be loaded onto the Pt platforms of auto-carrier t in a two-dimensional fashion, if they 

do not overlap, the loading platforms completely back (which can be rotated, translated, or extended), and 
stay under the maximum length and height allowed for cargo according to the regulation. 

iii. According to the LIFO regulation, when you go to a dealer 𝑖∈𝑅, all vehicles in the range of 𝑆-𝑖 can be 
removed from the vehicle transporter without delay. As a result, there will be no need to transfer vehicles 
that will be visited at later stages along the road. 

Condition I is a common capacity constraint, thus checking it is simple. However, solving the two-
dimensional loading problem we covered earlier makes checking conditions (ii) and (iii) a challenging task. In 
§4, we outline the loading problem in detail and show how we model it and the algorithms we employ to solve 
it, to keep the study concise. 
Our combinatorial problem is described as follows: Finding the most cost-effective routes that nevertheless 
satisfy all the following requirements is the objective of solving the auto-carrier transportation issue (A-CTP): 
each route must be load practical, all dealer requests must be satisfied, and no more than Kt auto-carriers of 
type t should be used. 
 

3. A Survey of the Literature 
 
An integral part of the A-CTP is the process of loading vehicles onto auto-carrier platforms and then directing 
those vehicles throughout the road network. We are proud to say that our method is the pioneering 
optimization solution to this issue. Our research indicates that existing optimization algorithms for auto-
carrier transportation focus on either loading or routing alone, with highly basic loading policies. Here we will 
first review the key findings in the relevant literature, and then we will explain how our algorithm is unique. 
Focusing on the loading subproblem, Agbegha, Ballou and Mathur (1998) detail the best methods utilized by 
corporations in the American market when delivering vehicles through auto-carriers Agbegha (1992). To 
represent the auto carrier’s LIFO priority among slots, they use a loading network, which they represent using 
a predetermined array of slots. Considering the loading network and any other pairwise incompatibilities. 
This leads to a branch-and-bound approach, which they use to resolve a nonlinear NP-hard assignment 
problem. No routing algorithm is suggested by them. 
We were unable to reproduce Agbegha's (1992) findings when we attempted to mimic contemporary 
European auto-carriers. It seems that the adaptability of these carriers has been much enhanced by loading 
equipment research over the past 20 years; they can now readily accommodate the transportation of one or 
two huge trucks or as many as twelve compact vehicles. 
The case study conducted by Perboli, Tadei, and Della Croce (2002) focuses on an Italian auto shipping 
company. Using an integer linear programming (ILP) framework, they offer a general heuristic that considers 
both loading and routing considerations. Their complex, multi-day, profit-maximizing problem is sure to test 
their mettle. Partially because of the immense complexity, they use two relaxations. First, they start by 
making the loading subproblem easier. When determining the equivalent length of each auto-carrier, the 
lengths of the loading platforms and any applicable loading equipment are added together, plus a constant. 
Then, they sort the cars into various loading classes based on their shapes. Then, they multiply the original 
length of each vehicle by a factor that is dependent on the loading class, and that's the equivalent length of the 
vehicle. As a result, there is only one capacity constraint that represents the loading problem: the total length 
of the related cars must not exceed that of the corresponding auto-carrier. By grouping all possible 
destinations together, they further reduce the routing burden. First, they implement a system that limits 
auto-carriers to loading vehicles within their own cluster. Then, to make it even better, they add support for 
vehicles from surrounding clusters. They distribute auto-carriers to various clusters rather than creating 
routes. These two caveats prevent us from using their system to learn specifics like platform vehicle loading 
and auto-carrier routing. 
To solve a vehicle carrier transportation issue in the American market, Miller (2003) investigates the loading 
and routing components, creates a greedy heuristic, and then optimizes the search between and within 
routes. To simplify things, he imposes certain constraints. He doesn't figure out how far it is to go from one 
place to another for the routing section. He assumes that automobiles are placed directly into the two 
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platforms, models the auto carrier as two flat loading platforms, and ignores technical constraints that might 
impede the assignment of vehicles to certain platforms. To reframe it, the loading problem is now a two-bin 
packing problem. 
A case study of the distribution of auto-carriers in Venezuela is discussed by Cuadrado and Griffin (2009). In 
the medium-term, they use an ILP model to handle the issue of auto-carrier fleet size optimization, and in the 
short-term, they use a two-phase heuristic that is directly based on Tadei, Perboli, and Della Croce to solve 
the problem of daily trip and load assignment to the transport units (2002). 
In their study of the American market, Jin et al. (2010) compared the two main modes of vehicle 
transportation: road and train. They use an ILP formulation to a business model that aims to reduce total 
distribution expenses. They group dealers into regions and then think about shipping cars by putting them in 
designated depots or ramps (automotive distribution centers). They address issues related to the placement 
of facilities; nevertheless, they do not give specific instructions on how to load automobiles or direct auto-
carriers. Lin (2010) analyses the computational behavior of the model on multiple instances by replicating it 
from Agbegha, Ballou, and Mathur (1998). 
In order for the loading subproblem to be considered an A-CTP, it must have a considerable impact on the 
routing subproblem. To comply with the CVRP's two-dimensional loading limitation, weighted two-
dimensional rectangles must be loaded into squares that have the same dimensions. The incorporation of 
two-dimensional constraints transforms it into a CVRP variant that is extremely challenging (Iori, Salazar 
González, and Vigo 2007). Gendreau et al. (2006) for furniture distribution, Doerner et al. (2007) for timber 
distribution, and Hoff et al. (2009) for real-world distribution hurdles are some examples of recent research 
that have investigated loading and routing issues that are not related to the A-CTP (mineral water 
distribution). The loading of auto-carriers, split deliveries, and heterogeneous fleets are all beyond the 
capabilities of any method that we are aware of. Iori and Martello have recently conducted research on 
routing and loading technologies (2010). 
Toth and Vigo (2002) and Golden, Raghavan, and Wasil (2007) are two works that we recommend to readers 
interested in vehicle routing in general (2008). The second one has an extensive overview of the topic of 
routing issues with split deliveries (Archetti and Speranza 2008). 
 

4. The Loading Problem and Its Resolution 
 
To ascertain the load feasibility of a specific route 〈𝑅, 𝑆, 𝑡〉 in accordance with conditions (i)-(iii), we propose a 
methodology that can be applied to this objective. Realistically solving the initial two-dimensional loading 
problem is famously challenging. The basis of our approximate modelling, which we use in conjunction with 
their loading network approach. Collaborating with the logistics company, we tested the reliability of our 
approximate modelling. Loadings involving cars of the same model are called homogeneous loadings, whilst 
loadings involving vehicles of various models are called heterogeneous loadings. 
Algorithm 1 lays out our loading technique, which we call check load. Two simple checks and a more 
sophisticated combinatorial method form its basis. 
 
Algorithm 
Input: Route 〈𝑅, 𝑆, 𝑡〉 
Output: feasible when the route satisfies load feasibility; not  feasible otherwise. 
if (∑ 𝑤𝑘 > 𝑊𝑡𝑘∈𝑆 ), afterwards, return not feasible 𝑓𝑡 =  ∑ 1/𝑑{𝑘𝑡}𝑘∈𝑆  

If (loading is uniform), then 
if (𝑓𝑡 > 1) afterwards, return not feasible 
else return would be not feasible. 
else 
if (𝑓𝑡 > 𝑓𝑠𝑢𝑝) then return infeasible 

else carry out precise method 
return information regarding feasibility supplied by the precise process 
end 
end 
The total weight of the vehicles is the initial point of calculation to determine if the load is practicable; if it is, 
the load is infeasible. In any other case, we calculate the fill index, 𝑓𝑡, as part of the second fast check. 

𝑓𝑡 = ∑
1

𝑑𝑘𝑡
𝑘∈𝑆

 

When the loading is uniform, every vehicle is loaded 𝑘 ∈ 𝑆 possess an identical load index 𝑑𝑘𝑡. Based on what 
we know about load index, it follows that the maximum 𝑑𝑘𝑡 this truck transporter can accommodate such 
vehicles. Hence, we return feasible if 𝑓𝑡 ≤ 1 and impossible in any other case. As an illustration, consider 
Figure 1's homogenous loading: we have 

𝑓𝑡 = ∑
1

7
= 1𝑘∈𝑆   Moreover, the burden is manageable. The data acquired by computation 𝑓𝑡 is extremely 

practical for homogeneous loadings but only approximate when applied to heterogeneous loadings. 
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Additionally, heterogeneous loading can be impracticable, when 𝑓𝑡 ≤ 1 and viable in situations where 𝑓𝑡 > 1. 
After an empirically determined maximum value fmax, we rule out all possible heterogeneous loadings. Once 
the business has completed the preliminary setup with the, we set 𝑓𝑚𝑎𝑥 = 1.2. 
 

 

 

2(a) 2(b) 
Figure 2 The Auto-Carrier Type's Precedence Graph in (b) 

 
As seen in Figure 1, Figure 2 displays the auto-precedence carrier graph. (a). The auto-carrier is shown in 
Figure 2 in a reduced dimension for clarity's sake (b). While all platforms are preceded by the rear lower 
platform (which we designate as 1), the rear upper platform precedes just the higher front platform. The 
transit method involves lowering platforms 3 and 4 to meet with the traffic law's maximum height 
requirement. Whenever a dealer comes to collect vehicles from platform 1, they raise platform 3. Because of 
this, two choices emerge: I raising platform 4, which would open up platform 1 for trucks on platform 2 to be 
emptied; or (ii) lowering the back part of platform 3, which would open up platform 3 for cars to offload. If 
Platform 3 is raised before Platform 2 is unloaded, raising it again will fix the emptying of Platform 2. The last 
step in unloading cars from platform 4 is to drive them through platform 3. As a result, there is clearly no 
order or precedence between platforms two and four. 
Assuming the cars were to be put directly onto the platforms, ensuring feasibility would have been as easy as 
making sure their combined length did not surpass the platform's length. The loaded cars can still spin, 
though, because loading devices are accessible on every platform (by lifting up their front or rears). A greater 
number of vehicles can be accommodated by reducing the vehicle's consumption of the platform length in 
this manner. 
 

5. Findings from Computer Models 
 
Our algorithms were implemented in CCC and executed on a Windows XP machine with a Pentium Dual-
Core processor, 2.70 GHz, and 2 GB of RAM. Using examples taken from the logistics company's actual 
problem, we evaluated the algorithms. We obtained 23 occurrences, or one for every working day, in July 
2009 when we were considering the daily distributions from the company's main depot. There were four 
different kinds of auto-carriers in the original fleet we looked at, but we ended up keeping just the first two 
since they handle nearly all of the deliveries (98 percent). In the first, there are four loading platforms that 
can hold 15.1 tonnes of weight, whereas in the second, there are just two platforms that can hold 6 tonnes of 
weight. There are a total of 723 vehicle kinds, with 14 auto-carrier type 1 loading classes and 8 auto-carrier 
type 2 loading classes. Using GIS-based software, for each set of vertices I j, we determined the shortest 
distances (in km) and entered them into the cost matrix cij. 
We have made the instances publicly available at www.or.unimore.it/A-CTP to promote future research on 
this vital topic. We took precautions to protect individuals' privacy by omitting personally identifiable 
information from the publicly accessible data. 
 
5.1. Evaluation considering Real-World Business Solutions 
With so many potential interruptions to regular life, it's hard to draw any reasonable comparisons to the 
company's industrial solutions. So, we used the company's daily-used heuristic method to build the initial 
daily plan and tested it on accessible instances to get a fair appraisal of our ILS. This allowed us to compare 
options that were independent of potential subsequent interruptions and related to the start of the working 
activity. After 1,500 CPU seconds, we stopped the optimal ILS configuration that employed the enumeration 
tree and fathoming criterion 1 to perform the comparison. 
Assuming a fill load of 1.1 or less makes loading practicable, the logistics company's technique considers it 
infeasible otherwise. Following the initial area clustering of dealers using the company's algorithm, routes are 
sequentially developed using a constructive greedy heuristic. Each region is visited by an auto carrier. The 
route will pass through a residential area if the auto-carrier departs before it is fully loaded. To avoid storing 
the full matrix 𝑐𝑖𝑗  in memory, the cost of a route is calculated after the route has been established. Much like 

with actual transportation problems, altering the routes provided by the software necessitates substantial 
human involvement. 
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Figure 5: Evaluation of the Logistics Firm's Algorithm vs. ILS and ILS with Simplified Loading 
 
As it turns out, the ILS consistently achieves better results than the company's algorithm, with an 
improvement of approximately 10.5% on average. While the company's algorithm outperforms the ILS with 
simplified loading in every scenario, the improvement here is 5.6% on average. The gains we've achieved 
appear to be attributable, therefore, to the routing and loading aspects of the issue. When compared to the 
company's current algorithm, the ILS clearly performs better when it comes to creating the first daily plans. 
In the event that the disruption transpires in the midst of the day, when computational resources may be 
scarce, the organization may contemplate executing the algorithm in order to generate an updated delivery 
schedule. Our proposed ILS converges to satisfactory solution values within minutes of execution, which 
qualifies it as an acceptable option for this task. This feature is emphasized in Figure 6, which was generated 
by imposing an 8-hour time constraint on each instance of the ILS. Initially, the percentage mismatch 
between the solution value returned at the conclusion of the operation and the current solution value was 
ascertained. The average gap per minute for all 23 cases included in our calculations is displayed along the 
vertical axis in Figure 6. Approximately fifty percent of the total improvement will be realized in solutions 
that are generated after only five minutes of ILS execution. Approximately seventy-five percent of the overall 
benefit is observed within twenty-five minutes after application. Three hours of CPU time results in an almost 
flat curve. 
 

 
Figure 6: Changes in the Disparity in Percentage Relative to the most well-known solution 

within a period of eight hours 
 

5.2. Assessment of ILS Efficiency 
Following 1,500 CPU seconds of executing the ILS with the enumeration tree and understanding criterion 1 
within the procedure check load, the execution was terminated. It was determined that this time constraint 
struck a suitable balance between the need for a practical application to execute rapidly (within minutes) and 
the assurance of a high-quality solution. We present the results of our analysis in Table 1. 
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Table 1: Results Obtained from the ILS Calculation and Comparison to a Multistate Approach 

 
 
To gain a more comprehensive understanding of the performance of the ILS, we analyzed the perturbation 
style and the local search, which are the two fundamental components of the algorithm. The ILS is one of 
numerous metaheuristics based on multistate systems. It is customary within this family to draw 
comparisons between the perturbation approach and the most fundamental implementation accomplished by 
the usual multistate (MS) algorithm (Lourenco et al.; 2010). The MS, like the ILS, seeks solutions by the 
iterative implementation of the randomized closest neighbor heuristic. In contrast, when the algorithm 
encounters a local minimum, it develops a novel solution by commencing from the beginning. 
Each local search algorithm improves the ILS's performance, as we have noticed. The average solution value 
is negatively affected by every removal (see column z). The average solution value rises to 43,781.1 or 
43,818.2 when the 1-0 dealer move or 1-1 dealer swap is eliminated, respectively, leading to the worst possible 
outcomes. It is worth mentioning that we eventually disregarded other local search operators. With each 
removal having no detrimental effect on solution quality, the ILS can outperform the original greedy 
solutions and prove to be quite resilient. 
 
5.3. Results of the Evaluation of the Packing Proposal 
This paper lays out the procedure for checking load, provides a mathematical model for it, and explains how 
to apply three algorithms inside it. These algorithms are based on exploring an enumeration tree. The specific 
effects of various algorithms on the ILS's performance are detailed in Table 4. In addition to the instance 
data, the table has four sets of columns that indicate the outcomes of executing the ILS with the given loading 
method. We tried out the following setups: 

• exhaustive listing of trees; 

• trees catalogued using understanding criterion 1 

• family tree enumeration using comprehension criterion 1 and 2. 
Tabulated in Table 1 are the optimal solution values (z), total iterations (ittot), and percentage of CPU time 
consumed in the loading procedure for each setup ( percent load). The bolded values are the optimal solution 
values for each case. 
 
5.4. Effects of the Limitations on Loading 
As an integrated loading and routing problem, the A-CTP is classed with similar ones. This field is being 
studied because a pure routing model is insufficient when there are loading limits, which can significantly 
impact the solution to a transportation challenge. An approximation method focusing solely on routing could 
be sufficient if the loading's impact is minimal. If it's big, you'll need to employ integrated loading and routing 
strategies. Therefore, the assessment of the loading constraints' effects has been the focus of the research by 
Gendreau et al. 2006; Zachariadis et al. 2012; This assessment is also significant for methods that view weigh 
down as a penalizing component in the objective function rather than a constraint; for instance, Erdoˇgan et 
al (2012); Fuellerer et al. 2009. 
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Table 2: The ILS's Outcomes Under Varying Stress Levels 

 
 
Change from the first ILS run, expressed as a percentage of the total number of auto-carriers used, is reported 
for each set of columns (∆𝑛𝑎𝑐), variation in the extent to which services are provided (∆𝑛𝑣𝑖𝑠), and proportion 
gap from z ((%𝑔𝑎𝑝). We observe that the problem is mostly unaffected by the weight constraint. Values are 
typically unaffected. of ∆𝑛𝑎𝑐, ∆𝑛𝑣𝑖𝑠, and %𝑔𝑎𝑝. Indeed, only a small number of vehicles are known for their 
exceptionally large weight, and in the vast majority of instances, the shapes of the vehicles place significant 
constraints on loading. In regard to the initial issue, the quantity of impractical alternatives lends credence to 
this idea. It turned out that five of the solutions were actually not possible when we checked them after 
condition I was removed. 
Removing criteria (ii) and (iii) has a bigger impact, resulting in a cost decrease of approximately 1.65% and 
the utilization of two fewer trucks. Keep in mind that the more visits there are, the more split deliveries will 
be required in this instance. All solutions generated by this setup were determined to be infeasible in relation 
to the initial problem; specifically, 669 out of 1,858 pathways were deemed infeasible, which has a significant 
impact on infeasibility. Due to the destructive nature of deleting the loading component and the consequent 
meaninglessness of the solutions produced in relation to the A-CTP, we do not present the results that were 
achieved by doing so. In general, it is not feasible to apply current techniques from the CVRP literature and 
loosen the loading requirements; doing so would provide solutions with high infeasibility. 
 

6. Findings and Looking Ahead 
 
We handled an interesting real-world transportation challenge involving putting vehicles onto auto-carriers 
and then routing them to dealers. Using an enumeration tree and an ILS, In order to load the automobiles 
and route the auto-carriers, we suggested a heuristic approach. 
Our proposed loading problem model accurately simulates real-world loadings and requires little in the way 
of processing resources to resolve. When compared to the results given by the company's present algorithm 
and a normal multistate technique, the overall algorithm achieves significant and consistent savings. We have 
thoroughly evaluated the optimal algorithm configuration. After analyzing the effects of various loading 
constraints, we determined that using pure CVRP algorithms and losing the loading constraints is not a viable 
option since it would produce solutions with high infeasibilities. Despite our presentation's emphasis on the 
Italian market, the idea is easily adaptable to other regions. By making the benchmark examples publicly 
available, we aim to inspire greater research on the subject. 
The essay was written with the assumption that there are sufficient auto-carriers to fulfil all the requests for 
autos on that day. Our examples sparked the change because they represented a period of great upheaval in 
the automotive sector (July 2009). It may be necessary to delay some deliveries until the following days if the 
fleet size is insufficient. Reducing route costs, fines for late deliveries, and other factors are typically 
considered while making these selections. Decisions like these arise in the context of dynamic multiperiod 
routing problems, which are sure to be exciting areas of study in the years to come. 
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