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ARTICLE INFO ABSTRACT 
 In recent years, discrete probability and statistical methods have made 

impressive developments that keep impacting all kinds of areas which include 
computer science (in particular, machine learning and finance), epidemiology, 
cryptography and social network analysis. This paper studies more recent trends 
of discrete probability via a systematic review on recent trends in Bayesian 
modeling, non classical distributions, stochastic process, discrete time financial 
models, as well as probabilistic AI frameworks. Further, we discuss emerging 
applications in disease modeling, post quantum cryptography, and network 
science, illustrating how discrete probabilistic methods are converging with deep 
learning based and hybrid modeling approaches. While highly successful at 
increasing accuracy, efficiency, and scalability of the predictions, all are still 
grappling with computational complexity, ethical (as well as interpretable) 
concerns in probabilistic decision making. This review evaluates the strengths 
and weaknesses of current model, provides gaps of current research and 
perspectives on future directions with techniques that are scalable to inference, 
hybrid probabilistic framework and fairness aware AI model. These studies 
produce synthesis of important developments and aim to provide researchers, 
practitioners an overview of modern discrete probability applications and some 
future research opportunities.   
 
Keywords: Discrete probability, Bayesian inference, stochastic models, Markov 
chains, probabilistic AI, financial risk modeling, epidemiology, quantum 
probability 

 
1 Introduction 

 
The probability distributions of interest are called discrete probability and they occur when the outcomes are 
countable, being either finite or infinite (Grimmett & Stirzaker, 2020). Discrete probability is different than 
continuous probability in that it deals with smooth distributions, as opposed to Bernoulli trials, Markov chains 
and Poisson processes (Ross, 2019). Based on this material, each of theses models plays a key role in decision 
making as well as stochastic modeling and combinatorial analysis. The probability mass function (PMF), 
expectation, and variance serve as key descriptors of discrete probability distributions (Casella & Berger, 2021). 
However, discrete statistics is concerned with the collection, analysis, and inference of data that is naturally 
categorical (discrete) or count based. Discrete data is analyzed either using statistical methods like contingency 
tables, logistic regression, and chi square tests or using statistical methods (Agresti, 2018). This is an important 
field in modeling count data in real world, especially in social sciences, healthcare and engineering (McCullagh 
& Nelder, 2019).   
Modern applications of discrete probability and statistics span various domains. Probabilistic graphical models 
constitute machine learning and artificial intelligence progress in speech recognition, text processing, and 
robotics (Murphy, 2012). Discrete statistical techniques become fundamental tools of cryptography, 
information theory and network security (Goldreich, 2019). Discrete probability models are used to track 
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disease spread or genetic mutations in biostatistics and epidemiology (Anderson & May, 2020). Poisson 
processes and geometric distribution are used in finance to model rare events, e.g. credit default and market 
crash (Cont & Tankov, 2021). As discrete probability and statistics is eventually becoming more and more 
relevant with the growing availability of large scale discrete datasets, the use of discrete probability and 
statistics is becoming more and more important. Further advances in stochastic computing, high dimensional 
inference and Bayesian frameworks give rise to their applications to be essential tools in contemporary 
scientific and technological progress (Jordan, 2018).   
Discrete probability and statistics are very important in modern applications in various disciplines. 
Probabilistic graphical models — Bayesian networks and hidden Markov models for illustration are provided 
— are used in machine learning and artificial intelligence to advance in speech recognition and natural language 
processing as well as in decision making algorithms (Murphy, 2012). Discrete Probability plays a fundamental 
role in the cryptographic algorithms, network security, and the error detection in the digital communications 
(Goldreich, 2019). Poisson distributions and Markov models are used by biostatistics and epidemiology to 
model disease spread and survival analysis (Anderson & May, 2020). Discrete stochastic models are used in 
the financial risk analysis to assess credit default probabilities, model rare financial events, and to optimize 
investment strategies (Cont & Tankov, 2021). As high dimensional discrete datasets become more widely 
available, the computational and statistical techniques become new—Bayesian inference, stochastic 
optimization, and probabilistic machine learning—expand the domain in which discrete probability and 
statistics are viable. These are indispensable tools for modern scientific and technological innovations (Jordan, 
2018).   
Recently, the field of discrete probability and statistics has gone through a series of transformations, which are 
mostly due to the rise in the complexity of modern data, improvement of computing method, and broader 
diversification of the range of applied disciplines. Consolidation of emerging research, key trends identification 
and future research directions demand for a comprehensive review of recent advancements. Probabilistic 
models and inference techniques that use discrete structures to better solve problems such as decision making, 
optimization, and uncertainty quantification have arisen as a result of the rapid evolution of machine learning, 
artificial intelligence, and data science (Murphy, 2012). Bayesian networks, probabilistic graphical models and 
discrete Markov processes now constitute integral methods to AI driven applications, and it is necessary to 
evaluate their most recent developments and improvements considerations (Jordan, 2018). More recently, 
growing challenges in big data and computational statistics have also led to the need for new approaches for 
dealing with high dimensional discrete data, categorical distributions and stochastic modeling (Casella & 
Berger, 2021). However, many of these datasets are becoming large scale and arise in domains such as 
genomics, finance, cybersecurity, and epidemiology, and they require statistical techniques to be revised to 
both bring about efficiency, accuracy, and scalability. For instance, these are now being used to track disease 
outbreaks, detect fraud, and optimize investment strategies and, therefore, continuous methodological 
advancements are required (Anderson & May, 2020).   
Furthermore, algorithmic and theoretical probability has recently made progress in a few breakthroughs that 
enable us to analyze random structures, optimize discrete probability distributions, as well as improve 
computational efficiency. This popularity of the field is highlighted by ways in which these innovations provide 
a structured review to enable researchers to have an updated synthesis (Goldrich, 2019). This paper attempts 
to bridge the gap between solid progress in theory and its applications in discrete probability and statistics 
through a review of recent developments and by providing leads to future research and to innovation in the 
theory of discrete probability and statistics.   
 

2 Objectives of the Study 
 

I Examine recent theoretical advancements in discrete probability, including developments in Bayesian 
inference, stochastic processes, non-classical distributions, and probabilistic graphical models.   

II Analyze computational techniques that enhance discrete probabilistic modeling, such as Markov Chain 
Monte Carlo (MCMC), variational inference, hybrid modeling approaches, and scalable deep probabilistic 
frameworks.   

III Explore interdisciplinary applications of discrete probability in machine learning, finance, epidemiology, 
cybersecurity, and network science, emphasizing its growing impact in real-world problem-solving.   

IV Identify challenges and open research problems, including scalability issues, computational complexity, 
gaps in data availability, and the need for hybrid discrete-continuous probabilistic models.   

V By achieving these objectives, this study aims to serve as a valuable resource for researchers, academicians, 
and practitioners, offering critical insights into the evolving landscape of discrete probability and its 
potential for driving future innovations.   
 

3 Methodology 
 
This paper is a systematic and systematic approach to the review of the recent progress in the discrete 
probability and statistics, so that it is comprehensive, unbiased and rigorously academic synthesis of previous 
research. The methodology includes selecting literature, categorising them in themes, performing comparative 
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and critical analysis, and this provides for a highly discussed theoretical development, computational 
techniques, as well as applications in real world. 
In this first step, I conducted systematic literature search over the reputable academic database of Google 
Scholar, IEEE Xplore, Springer link, Science Direct and arXiv. Only publications from the period of the last ten 
years (2013–2024) were taken into account to maintain the relevance of the review to the current state of affairs 
in the field. Keywords used were discrete probability, Bayesian inference, Markov chains, probabilistic 
graphical models, stochastic processes, quantum probability, and statistical decision making, and they were 
used as a criterion to search. Peer reviewed journal articles, influential conference papers, high impact 
theoretical contributions were filtered out to prioritise them. Old and redundant studies were filtered out. A 
criterion of inclusion-exclusion was applied to the dataset to refine it. A list of studies was selected based on 
introduction of novel theories, computer techniques or real world applications to discrete probability. There 
have been also included papers with comparative analyses of classical and modern approaches. On the other 
hand, studies without empirical validation or quantitative analysis, studies without relevance to discrete 
modeling, and all non English publications without publicly available full texts were excluded. 
Based on key themes, they were categorized once relevant studies were identified. A structured analysis was 
conducted in that they were organized based on the relevant studies identified. Finally, the review focused on 
theoretical contributions that include progress in discrete probability distributions, stochastic models and 
Bayesian inference, together with computational progress in Markov chain Monte Carlo, variational inference, 
and probabilistic deep learning. In addition, considerable effort was spent on applications in real world such 
as machine learning, finance, cybersecurity, epidemiology, and quantum computing to give a interdisciplinary 
flavor to the impacts of discrete probability models. Next, a comparison was made between different 
approaches in order to determine strengths and weaknesses. The areas of trends, computational challenges and 
open problem were critically investigated by reviewing the selected studies. In cases, where applicable, 
validations were performed through quantitative comparisons, algorithmic performance metrics and case 
studies. This ensured that the review was not only theoretical but practical, as discrete probabilistic models 
applied to real life situations are shown. 
After filtering out, the insights were synthesized into a structured discussion at the end point, making it clear, 
accessible and useful for all the researchers, practitioners and students. This paper provides a coherent account 
of what emerging trends are, what are their implications and what future research directions should be 
followed. This in turn provides a critical methodology that should also be described as objective, rigorous and 
balanced review of discrete probability and statistical advancements, making this review a resource for further 
research in that field. 
 

4 Emerging Trends in Discrete Probability 
 

4.1 Non-Classical Distributions: New Probability Distributions and Extensions   
In the recent years, discrete probability field has been witnessed with the advancement of non classical 
probability distributions to extend the traditional models to cope with the complexities of contemporary data 
analysis. This has always been done with classical discrete distributions, like binomial, Poisson, geometric, and 
negative binomial, in probability theory. But now, with the rising need for flexibility, responsiveness and higher 
modeling accuracy, researchers have started to come up with new probability distributions and generalizations 
of those classical models. The development of generalized discrete distributions is one of the key advancements 
in nonclassical distributions as it includes more parameters to improve the modeling capability. The q-series 
distributions (e.g., the q-Poisson and q-binomial distributions) provide a deformed form of their classical 
counterparts by a parameter \( q \) that modifies the extent of departure from the standard form 
(Charalambides, 2019). The classical models that they have found applications in do not suffice in cases where 
complex dependencies are present; they have been used in quantum probability, statistical mechanics, and in 
combinatorial optimization.  Major extension in the context of fractional calculus is the discrete Mittag-Leffler 
distribution, which arises from the same family of distributions (geometric and the negative binomial 
distribution) as in Pillai and Jayakumar (2021). In particular, this distribution has been used in modeling heavy 
tailed discrete data in finance, reliability engineering and epidemiology where events show long rang 
dependence and non exponential waiting times.   
Compound and mixture distributions have also become popular because they can model over-dispersed and 
heterogeneous discrete data. Examples of such distributions that are more flexible in capturing real world count 
data departing from standard Poisson or negative binomial assumptions are the Poisson-inverse Gaussian 
(PIG) distribution and the negative binomial-Lindley distribution (Karlis & Xekalaki, 2020). The use of these 
distributions has been wide spread in actuarial science, biological modeling and risk management. The 
development of Dirichlet process based discrete distributions resulting from new memoryless (Bayesian) 
nonparametric approaches to modeling complex categorical data has also occurred (Hjort et al., 2019) since 
the rise of such approaches. To some extent they have completely changed the game in areas like machine 
learning, genetics or any other field where a discrete probability distribution was too restricted. These non 
classical distributions offer powerful extensions as applications of discrete probability research emerges that 
bridge theory and application. Due to their continued development and refinement they will continue to 
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contribute highly to addressing new challenges presented in data science, finance, engineering and artificial 
intelligence, considering the applicability of discrete probability models.   
4.2 Advances in Discrete-Time Markov Chains and Hidden Markov Models (HMMs). 
DTMCs and HMMs have been standard workhorses in probability modeling since long time and have 
applications in machine learning, finance, bioinformatics, speech recognition along with other areas of 
reliability engineering. Over the past few years, these models have been improved in scalability, computational 
efficiency, and increasing predictive power in order to be applied to more sophisticated and higher dimensional 
problems. The most important advancements in the DTMCs research have been the introduction of higher 
order Markov chains and non homogeneous Markov models (Iosifidis & Vlahavas, 2020). The memoryless 
property of traditional DTMCs is where the probability of transition to the next state solely depends on the 
current state. However, models of higher order are able to depend on more than one past states and this gives 
more accurate models for the applications such a finantial time series analysis, genetic sequencing, and 
reinforcement learning. Moreover, the time varying and non homogeneous Markov models have been 
introduced to capture dynamic and evolving system, e.g., climate change pattern and market fluctuation (Chen 
et al., 2022).  Recent developments concerning state estimation, model flexibility and interpretability in the 
realm of Hidden Markov Models (HMMs) are limited by its ability to overcome limitations. In real world 
applications, the number of hidden states and transition probabilities may need not be fixed, and this may not 
be indicated while using traditional HMM. In order to address these challenges, Bayesian nonparametric 
HMMs have been developed by researchers, where the number of states can grow dynamically depending on 
the complexity of the observed data (Teh & Jordan, 2019). In the area of speech processing, genomics, and 
topic modeling, such models have proven to be particularly useful, since the true underlying state structure is 
not known.   
Additionally, deep learning enhanced HMMs have proven to be a very powerful alternative to the classical 
HMM. Researchers have integrated HMMs with neural networks, recurrent neural networks (RNNs), and 
transformers for great improvement of tasks like speech recognition, handwriting recognition, and financial 
forecasting (Graves & Jaitly, 2021). By combining the sequential dependencies in HMMs with the 
representational power of deep learning, these hybrid models surpass the abilities of standard HMMs in 
difficult time series prediction problems. Reinforcement learning is also applied to HMM training and 
optimization, which is another important step. EM algorithms for HMM training are traditionally slow, and 
may experience local optima. In recent years, policy gradient methods and deep Q learning algorithms have 
been studied in the context of optimization of HMM based decision processes especially in robotics, automated 
trading and health care diagnostics (Silver et al., 2020). These advancements are extending the applicability of 
research in discrete time Markov chains and HMMs in more and more domains as research in this area 
continues to evolve. Markovian modeling, blended with modern computational techniques, has been integrated 
for the adaptive speech recognition systems and high frequency trading to the next generation of probabilistic 
modeling and decision making systems.   
4.3 Impact of Quantum Probability Models   
Quantum probability models have emerged as a transformative extension of classical probability theory, 
providing new mathematical frameworks for decision-making, machine learning, cryptography, and quantum 
computing. Unlike classical probability, which relies on Kolmogorov’s axioms and assumes that probabilities 
are real-valued and additive, quantum probability is based on the principles of Hilbert space theory, non-
commutative operators, and probability amplitudes, allowing for more flexible representations of uncertainty 
and complex correlations (Busemeyer & Bruza, 2019). These models have gained attention for their ability to 
explain paradoxical phenomena in human cognition, optimize quantum computing algorithms, and enhance 
probabilistic reasoning in artificial intelligence. One of the most significant impacts of quantum probability 
models has been in cognitive science and decision theory. Classical probability struggles to explain certain 
inconsistencies in human decision-making, such as the order effects in survey responses, the conjunction 
fallacy, and violations of the sure-thing principle observed in behavioral economics. Quantum probability 
provides a superposition-based framework that captures these effects by allowing for context-dependent 
probability amplitudes, leading to more accurate predictive models in psychology and behavioral economics 
(Khrennikov, 2020).   In machine learning and artificial intelligence, quantum probability has led to the 
development of quantum-inspired models for pattern recognition, natural language processing (NLP), and 
probabilistic graphical models. For example, quantum Bayesian networks and quantum Markov models 
generalize classical probabilistic models by incorporating non-commutative probability spaces, improving 
inference capabilities in high-dimensional and uncertain environments (Zhang et al., 2021). Additionally, 
quantum-inspired neural networks leverage quantum probability principles to enhance deep learning 
architectures, making them more efficient in handling entangled dependencies in sequential and relational 
data (Haven & Khrennikov, 2019).   
Another crucial domain impacted by quantum probability is cryptography and quantum computing. Classical 
probability models are foundational to conventional cryptographic techniques, such as random number 
generation, key distribution, and zero-knowledge proofs. However, with the rise of quantum cryptographic 
protocols, such as quantum key distribution (QKD) and post-quantum cryptography, quantum probability 
models provide a rigorous mathematical basis for ensuring security in a quantum computing environment 
(Nielsen & Chuang, 2020). The ability of quantum probability to model superpositions, entanglement, and 
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uncertainty allows for the design of unconditionally secure cryptographic protocols that are resistant to 
classical and quantum attacks. Furthermore, in stochastic processes and statistical mechanics, quantum 
probability is being applied to model non-classical random processes, such as those found in quantum walks, 
quantum chaos, and open quantum systems. These applications have profound implications for quantum 
algorithms, material science, and quantum statistical inference, enabling researchers to analyze systems where 
classical probability fails to capture the underlying stochasticity (Attal et al., 2019). The growing impact of 
quantum probability models is reshaping multiple fields by providing alternative probabilistic reasoning 
frameworks that overcome the limitations of classical models. Whether in human cognition, AI, cryptography, 
or quantum computing, these advancements continue to drive the next wave of innovations in probability 
theory, information processing, and complex system modeling.   
4.4 Entropy-Based Measures: Applications in Data Compression and Signal Processing  
Entropy based measures are important in data compression and signal processing, and as a mathematical 
description of uncertainty, information content and redundancy of discrete data. Entropy is based on 
Shannon’s Information Theory and is the fundamental tool for data encoding and noise reduction which is used 
in modern computing and communication systems including the optimization of feature extraction (Shannon, 
1948). As big data, machine learning, real-time signal analysis, have been growing at a rapid pace, entropy 
based technique transformed to enable high efficient compression algorithms, better transmission protocols, 
and better signal reconstruction methods. Entropy is used in data compression to find the minimum 
redundancy while maintaining the important part of information. The lossless compression algorithms like 
Huffman coding and Arithmetic coding are based on Shannon’s Entropy Coding Principle, meaning that 
symbols with higher probability are assigned shorter codes, resulting into lesser storage space (Cover & 
Thomas, 2006). In lossy compression, such as JPEG for images and MP3 for audio, entropy-based methods 
like Rate-Distortion Theory balance compression efficiency with minimal perceptual quality loss (Sayood, 
2017). Yet these ways have made data storage, multimedia streaming, cloud computing to all an efficient 
bandwidth utilization making methods.   
The entropy measures are widely used for feature extraction, pattern recognition and noise filtering in signal 
processing. Spectral entropy quantifies the signal complexity, which is useful in the EEG brainwave analysis, 
speech recognition and biomedical imaging (Rosso et al., 2001). The entropy based thresholding improves the 
denoising techniques in speech and audio processing by discriminating between signal and random noise. 
Wavelet entropy also facilitates detection of faults, analysis of ECGs, and analysis of geophysical data (Zhao et 
al., 2011), as well as non-stationary signals. Like that, entropy based methods are also critically important to 
cryptography security, and in anomaly detection. Shannon entropy and Rényi entropy are applied for detecting 
irregularities in network traffic, fraud detection and malware analysis, where deviations from expected entropy 
levels are indicators of potential security threats (Verma & Ranga, 2019). Likewise, entropy prevents the feature 
representation from becoming robust in biometric authentication systems such as in the Fingerprint, Iris, and 
Facial recognition systems. With growing volume and complexity in the data, entropy based approaches will 
further improve compression efficiency, real time signal processing, etc. It is expected that there would be 
future research towards adaptive entropy based learning models, using deep neural networks with entropy 
regularization to increase data efficiency, robustness and computational scalability on various technological 
domains. Following is the table of Trend and Field of application. 
 

Figure 1 - Trend & Field of application 
Trend Description Impact Fields of 

Application 
Bayesian 
Modeling 
Growth 

Expansion of Bayesian inference, including 
Hamiltonian Monte Carlo (HMC) and 
Variational Inference (VI), improving 
computational efficiency. 

Enhanced uncertainty 
quantification, better model 
interpretability, and improved 
predictive accuracy. 

Machine 
Learning, 
Finance, 
Epidemiology, 
Genomics 

Non-Classical 
Distributions 

Introduction of generalized discrete 
distributions (e.g., q-series, Mittag-Leffler) 
to model complex count-based data. 

Improved statistical modeling for 
over-dispersed, heavy-tailed, and 
non-homogeneous discrete data. 

Risk Analysis, 
Bioinformatics, 
Stochastic 
Modeling 

Advancements 
in Hidden 
Markov 
Models 
(HMMs) 

Integration of deep learning with HMMs 
for sequence modeling and dynamic state 
estimation. 

Improved speech recognition, 
anomaly detection, and time-
series forecasting. 

NLP, Speech 
Processing, 
Cybersecurity, 
Finance 

Quantum 
Probability 
Models 

Application of quantum-inspired 
probability in decision-making, machine 
learning, and cryptography. 

Enhanced predictive modeling, 
improved encryption security, 
and better representation of 
cognitive uncertainty. 

AI, 
Cybersecurity, 
Cognitive 
Science, 
Quantum 
Computing 



1417 Kapil Dev Pandey et.al / Kuey, 30(11), 9484  

 
Discrete-Time 
Financial 
Models 

Refinements in binomial asset pricing, 
Markov-based risk models, and Bayesian 
portfolio optimization. 

More accurate financial 
forecasting, improved risk 
assessment, and adaptive 
investment strategies. 

Finance, 
Algorithmic 
Trading, Risk 
Management 

Graph-Based 
Discrete 
Models in 
Social 
Networks 

Use of stochastic block models (SBMs) and 
Exponential Random Graph Models 
(ERGMs) for analyzing network structures. 

More accurate detection of 
communities, influence 
propagation, and misinformation 
tracking. 

Social Media 
Analytics, 
Political Science, 
Behavioral 
Economics 

Handling 
Large-Scale 
Discrete Data 

Development of tensor decompositions, 
probabilistic data structures, and parallel 
computing frameworks. 

Faster processing and analysis of 
high-dimensional discrete 
datasets, enabling real-time 
decision-making. 

Big Data 
Analytics, 
Genomics, NLP, 
AI 

Discrete 
Statistical 
Methods in 
Disease 
Modeling 

Use of Bayesian epidemiological models, 
Poisson-based outbreak detection, and 
agent-based simulations. 

Improved real-time pandemic 
predictions, better resource 
allocation, and optimized 
intervention strategies. 

Public Health, 
Epidemiology, 
Biostatistics 

Discrete 
Probability in 
Cryptography 

Advances in post-quantum cryptographic 
algorithms (LWE, Ring-LWE) and 
probabilistic encryption methods. 

Increased security against 
quantum attacks, better key 
randomness, and more secure 
communication. 

Cybersecurity, 
Data Privacy, 
Blockchain 

 
5 Recent Developments in Discrete Statistics 

 
5.1Discrete Probability in Machine Learning and Natural Language Processing (NLP)   
Probabilistic predictions as well as the optimization of decision making processes are the fundamental role of 
discrete probability in machine learning (ML) and natural language processing (NLP), since it provides a 
mathematical ground for uncertainty modeling. For many real world problems in ML and NLP, these data are 
inherently discrete, such as categorical, sequential, or count based. Discrete probability is applied for robust 
solutions of many interesting problems in Bayesian inference and probabilistic graphical models (PGM), 
hidden Markov models (HMM) and deep generative techniques.   
Probabilistic classification, uncertainty estimation and latent variable modeling are crucial parts of machine 
learning and use discrete probability. Some algorithms such as Naïve Bayes classifiers use discrete probability 
distributions like multinomial and Bernoulli distributions to solve text, image, and spam detection problems 
(Murphy, 2012). Finally, discrete probability, Bayesian networks and Markov random fields, are the ones that 
probabilistic graphical models, including Bayesian networks and Markov random fields, use to model the 
dependencies among variables in structured data. They are widely applied in medical diagnosis, speech 
recognition, as well as fraud detection, wherein decisions need to be made under uncertainty (Koller & 
Friedman, 2009). Discrete probability is critical for language modeling, text generation, sequence prediction, 
in NLP. For example, classical models such as n-gram language models assume Markov and predict the 
probability of words in a sequence based on it (Jurafsky & Martin, 2021). The most widely applied HMMs and 
CRFs are based on discrete probability and have been deployed for speech recognition, part-of-speech tagging, 
as well as for named entity recognition (NER) (Manning & Schütze, 1999). The first type of models, learn 
sequential dependence in text and speech and allow structured predictions in NLP applications. Deep learning 
has brought us to an era where discrete probability remains an important element of probabilistic deep 
generative models like variational autoencoders (VAEs), restricted Boltzmann machines (RBMs), and discrete 
latent variable models, and the field has come a long way considering the situation in 2009. These methods 
combine discrete probability distributions in order to create text, image, and structured data representations 
that are realistic. Discrete probability is used for token level probability estimation in tasks like text generation, 
summarization and machine translation (Vaswani et al., 2017) in state-of-the-art NLP models like GPT and 
BERT, and transformers are used to power those models. Additionally, RL models are very dependent on 
discrete probability for their policy learning and choice making. Reinforcement learning algorithms are used 
to optimize conversation in dialogue systems, chatbot’s, etc. by using discrete probability distributions over 
possible actions to choose the optimal conversational response (Sutton and Barto 2018).   
Uncertainty quantification also heavily relies on discrete probability in order to use Bayesian deep learning 
techniques to increase model reliability and meaning. Discrete priors and posterior distributions are used in 
Bayesian models that use for text classification, sentiment analysis and topic modelling (Blei et al., 2003).  Now, 
as machine learning and NLP evolve, discrete probability is still a subroutine of indispensable importance for 
designing robust and interpretable probabilistically sound models. It is applicable in sequence modeling, 
generative AI, uncertainty estimation, and decision making and will remain relevant in the deep learning and 
AI driven language technologies.   
5.2 Methods for Handling Large-Scale Discrete Data   
Large scale discrete data are being produced in abundance in a variety of areas such as machine learning, 
natural language processing (NLP), bioinformatics, and network analysis, and the need is felt to have fast 
computational and statistical methods for processing and storing as well as analyzing these data. However, 
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massive discrete dataset often has dimensionality, sparsity, and computational complexity in traditional 
statistical concept. Recently advanced approaches have advanced a various range of methodologies, like 
probabilistic modelling, compressed information matters, electronic computing and executable Bayesian proof. 
The use of probabilistic scheme graphical models, such like Bayesian networks and Markov random fields 
(MRFs) one of the most important progress in handling high dimensional discrete data, because it permits 
structured representation dependencies in high dimensional discrete spaces (Koller & Friedman, 2009). 
However, due to sparsity and conditional independence, these models have low computational complexity and 
thus are well suited for applications, for example, the social network modeling, fine genomic data analysis and 
document classification. Approxi mate inference techniques like Markov Chain Monte Carlo (MCMC) and 
Variational Inference (VI) can be another power method since they can estimate computationally challenging 
probabilistic model efficiently (Blei et al., 2017). Many discrete probabilistic models have been tackled by the 
MCMC based methods including Gibbs sampling and the Hamiltonian Monte Carlo. On the other hand, using 
MCMC requires one to run just that sample many times, which makes it unsuitable for large scale datasets in 
NLP and AI and VARIATIONAL INFEWERENCE is a scalable alternative which approximates posterior 
distributions deterministically.   
In the case of high dimensional discrete data, dimensionality reduction techniques as random projections, 
feature hashing, and word embeddings are very important. BERT and word2vec embeddings are used as 
preprocessors in NLP that transform high dimensional sparse textual data into lower dimensional dense 
representation in line with the semantic relationships (Vaswani et al., 2017). For example, for such discrete 
datasets, latent structure can be discovered using the tensor decomposition methods like Singular Value 
Decomposition (SVD) and Non-negative Matrix Factorization (NMF) for example in the recommendation 
system and social network analysis (Cichocki et al., 2009).  Handling large scale discrete data has also been 
done by parallel and distributed computing frameworks like Map Reduce, Apache Spark, TensorFlow among 
others. Due to such frameworks, represented by HDFS, Hive, Pig, SparkSQL, Spark streaming, and Mesos, 
terabyte scale categorical data in bioinformatics, computational linguistics and large scale probabilistic 
modeling (Zaharia et al. 2016) can be processed efficiently. A second growing method, which is based on 
probabilistic data structures like Bloom filters, Count Min Sketch, and HyperLogLog [Cormode & 
Muthukrishnan, 2012] completely populates the large scale discrete data into a space efficiently representation 
but allows fast approximate queries. For the studies we performed this is true in network security, streaming 
data analysis, and real time anomaly detection where exact computation is not possible due to memory and 
time constraints.   
These advanced statistical, mathematical, and computational techniques are becoming indispensable because 
as data scale and complexity grows, data at such a scale and complexity are always so large. Future research is 
likely to use hybrid methods of exploitation, such as deep learning, probabilistic models, and distributed 
computing to improve scalability and efficiency even further in discrete data analysis.   
5.3 Growth of Bayesian Modeling Techniques   
During the past decade, there have been great improvements in computational methods, efficient inference, as 
well as interdisciplinary applications of Bayesian modeling. These traditional frequentist approaches often lack 
the ability for quantifying uncertainty, the ability to infer high dimensional parameters, and the use of small 
data scenarios, while Bayesian methods offer a proper probabilistic framework, which incorporates prior 
information and updates their beliefs based on the growing new data (Gelman et al., 2013). Innovations in 
Markov Chain Monte Carlo (MCMC), Variational Inference (VI), Bayesian deep learning, and probabilistic 
programming languages have made the growth of Bayesian modeling more scalable and applicable to complex 
real world problems.   
Hamiltonian Monte Carlo (HMC) and Stochastic Variational Inference (SVI) have been major catalysts for the 
expansion of Bayesian techniques, since they have made HMC computational feasible for inference on the 
natural parameter of most distributions, while proving effective for draw sampling in variational Bayesian 
inference (VBGI). Classical MCMC has advanced significantly to the stage where HMC, which improves MCMC 
by incorporating gradient based sampling, has sped up Bayesian computation in high dimensional parameter 
spaces to the point of being practical (Neal, 2011). As with SVI, Bayesian inference on large datasets can be 
done via optimization rather than expensive sampling, and SVI does this for streaming data and large scale 
probabilistic models as well (Hoffman et al., 2013). Furthermore, Bayesian deep learning has also identified 
reasons to adopt Bayesian modeling such as in estimation of uncertainty, robustness, and interpretability. 
Bayesian Neural Networks (BNNs) have been applied successfully in medical diagnostics, autonomous systems 
and reinforcement learning where the uncertainty quantification is crucial and many other applications 
(Blundell et al., 2015). Hyperparameter tuning has also been improved through advances in Bayesian 
optimization especially as it applies to deep learning, very efficient search strategies for deep learning model 
architectures can be carried out (Snoek et al., 2012).  An important advancement is also the creation of 
probabilistic programming languages (PPLs) like Stan, PyMC3, Edward and TensorFlow Probability which 
bring the democratization of Bayesian modeling bringing user friendly frameworks for building and inference 
of complex probabilistic model (Blei et al., 2017). As has happened with the tools, Bayesian adoption has been 
accelerated through these tools in finance, epidemiology, and the social sciences, and hierarchical Bayesian 
models are now routinely applied in risk modeling, disease forecasting, and policy evaluation (Vehtari et al., 
2021).   
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In addition to that, there is a trend to use Bayesian nonparametric models that have flexible and data driven 
structures with no assumptions of fixed numbers of parameters. DPMMs and GPs have been widely used in 
clustering, regression and spatiotemporal modelling and have been used in many applications, including 
genomics, natural language processing and image analysis (Rasmussen & Williams, 2006). Looking forward, 
future research will complement Bayesian modeling with faster ways of implementing it, scalability, 
interpretability, and making it real-time to bridge the gap between the use of Bayesian method and deep 
learning while extending the use of Bayesian method in scientific discovery, AI safety, Probabilistic decision 
making. It is interesting that the integration with modern computational advances and Bayesian principles is 
paving the way for increasing the influence of probabilistic models in next generation models not only for 
probabilistic modeling but also for problems much beyond that.   
5.4 Analyzing Social Network Structures Using Discrete Models   
 Since the analysis of social network structures is an important area of research in computational social science, 
economics, epidemiology and artificial intelligence, we use a set of tools from complex networks and graph 
theory to analyze the event and actors. Since social networks are composed of discrete entities (nodes) and 
relations (edges), we have discrete probability and statistical models that form the important foundations for 
studying topological properties, community structures, and a spread of influence as well as dynamical evolution 
in social network (Easley & Kleinberg, 2010). As large scale digital networks like social media platforms, 
citation networks and online communities have grown, so has the need to extract insights from the complex 
relational data, and this is has been done by means of efficient and scalable discrete probabilistic models. For 
instance, the fundamental approaches in network analysis are graph based discrete models, namely, the 
discrete random graph model, often used is the Erdős–Rényi (ER) model and the Barabási–Albert (BA) 
preferential attachment model (Newman, 2018). In completing this thesis, the ER model was used as a simple 
yet effective framework to consider degree distributions, clustering coefficients and path lengths in social 
networks based on the assumption that edges between nodes occur independently with a fixed probability. Real 
world social networks, however, do not follow this, as their degree distributions are heavy tailed whereby few 
nodes (influencers) have many more connections than the rest. This is addressed with the BA model that 
incorporates preferential attachment, where new nodes are drawn to be more likely to connect to already well 
connected nodes and captures the scale free properties on Twitter and LinkedIn (Barabasi, 2016).   
MRFs and ERGMs constitute more flexible models of network dependencies and structural motifs from 
discrete probabilistic models, while extending the categorical domain. ERGMs generalize classical random 
graph models as one can define the probability of an edge as a function of network structural properties (such 
as reciprocity, transitivity, and homophily) (Robins et al., 2007). Such models have been applied frequently in 
studying friendship networks, online interactions and organizational structures where the relationships are not 
created freely, but subject to social dynamics. Stochastic block models (SBMs) is another powerful framework 
to analyze social networks which can define a discrete probabilistic method to cluster the nodes into latent 
groups based on their connectivity patterns (Abbe, 2017). They have been extensively used in political network 
analysis, fraud and recommender systems where structures hidden within networks need to be identified. 
Degree corrected SBMs and hierarchical SBMs extend the modeling accuracy for heterogeneous and multi 
layered networks (Peixoto 2020). Information diffusion and influence propagation modeling in networks 
involve also the use of discrete probabilistic techniques. The Independent Cascade (IC) model and the Linear 
Threshold (LT) model are two models for discrete probability to simulate information, rumors, or innovations 
spreading over the network (Kempe et al., 2003). Analysis of diffusion dynamics using these models is 
important and these models are widely used in viral marketing, social contagion studies and epidemiological 
modeling.   
In recent times, as increased amounts of network data become available, there has been a growing effort 
towards combining Bayesian inference, machine learning, and deep generative models into discrete social 
network analysis. GNNs have achieved remarkable success in various graph related problems (such as link 
prediction, anomaly detection, and social recommendation systems) (Zhou et al., 2020). Advanced research of 
this domain will not stop yet and to solve incomprehensible complex social system problems, there will be a 
need for integration of classical discrete models with modern computational techniques.   

 
Figure 2- Advancements in Discrete Probability and Bayesian Methods in AI and Data Science 

Development Description Impact Fields of Application 
Discrete Probability 
in Machine Learning 
and NLP 

Discrete probability enables 
probabilistic classification, 
sequence modeling, and 
uncertainty estimation in AI 
and NLP. Methods include 
Naïve Bayes classifiers, 
Bayesian networks, and 
Hidden Markov Models 
(HMMs). 

Improved speech 
recognition, text 
generation, and structured 
decision-making in 
uncertain environments. 

Natural Language 
Processing (NLP), Speech 
Recognition, AI-driven 
Chatbots, Sentiment 
Analysis 

Methods for Handling 
Large-Scale Discrete 
Data 

Techniques such as 
probabilistic graphical 
models, variational 

Enhanced computational 
efficiency in processing 

Big Data Analytics, 
Computational Biology, 
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inference, tensor 
decomposition, and 
distributed computing 
frameworks improve 
scalability. 

high-dimensional discrete 
datasets. 

Social Network Analysis, 
NLP 

Growth of Bayesian 
Modeling Techniques 

Advances in Bayesian 
inference methods, 
including Hamiltonian 
Monte Carlo (HMC), 
Stochastic Variational 
Inference (SVI), and 
Bayesian Deep Learning. 

More robust probabilistic 
models for uncertainty 
quantification, risk 
analysis, and scientific 
discovery. 

Machine Learning, 
Healthcare Diagnostics, 
Financial Risk 
Management, AI Safety 

Analyzing Social 
Network Structures 
Using Discrete Models 

Use of graph-based 
probabilistic models, such as 
Exponential Random Graph 
Models (ERGMs) and 
Stochastic Block Models 
(SBMs), for network 
analysis. 

Better insights into 
community detection, 
influence propagation, and 
fraud detection. 

Social Media Analytics, 
Political Science, 
Cybersecurity, Behavioral 
Economics 

 
6 Applications of Discrete Probability and Statistics 

 
6.1 Finance & Risk Analysis: Discrete-time models in quantitative finance. 
Quantitative finance and risk analysis are usually full of uncertainty, where financial systems have some certain 
properties with inherent uncertainty are considered, and the robust probabilistic framework is needed for 
decision making, hence, discrete probability and statistical models play a key role in these application areas. 
The discrete time models are used in many financial processes as stock price movements, credit risk assessment 
and portfolio optimization that provide structure of the risk estimation, derivative pricing and asset 
management (Shreve, 2004). Discrete time models have evolved a great deal over the years, becoming 
increasingly able to predict and more efficient in terms of risk management strategies. The most used discrete-
time model in finance is the Binomial Asset Pricing Model, as introduced by Cox, Ross and Rubinstein (1979). 
This is a discrete time stochastic process model in which the price of asset changes with a given probability to 
go up by a constant amount or down by the same amount in any one step. In the Black-Scholes framework, 
option pricing proceeds from the binomial model, and is necessary for pricing American options, since early 
exercise is possible (Hull, 2017). The binomial model is extended to trinomial trees and lattice based methods 
that provide better approximations for derivative pricing. The second key application is in credit risk modelling, 
where Markov chains and Hidden Markov Models (HMMs) are applied for the study of the credit rating 
transitions, default probability of loans, and the corporate bankruptcy risk (Jarrow & Turnbull, 1995). Markov 
models that take discrete creditworthiness states estimate the likeliness of borrowers residing in different 
creditworthiness categories and are useful at banks and financial institutions in managing loan portfolios and 
in the assessment of systemic risk.   
Algorithmic trading and high frequency finance are discrete time models where stochastic processes such as 
Poisson processes and jump diffusion models are used to describe price movements which are not regular (Cont 
& Tankov, 2004). In particular, discrete event simulations are used in these applications to optimize trade 
execution strategies as well as minimize the slippage costs incurred by limit order book dynamics and market 
microstructure modeling. Discrete probability has a central role in portfolio optimization and risk 
management, where one estimates Value at Risk (VaR), and Expected Shortfall (ES) which are standard risk 
measures of market risk. Robust tools for stress testing portfolios under extreme market conditions 
(Glasserman et al., 2002) belong to discrete statistical techniques such as Monte Carlo simulations and 
bootstrapping methods. Finally, discrete Bayesian models are used for adaptive portfolio management, in 
which the asset returns are updated continuously based on observed data from the prior beliefs over asset 
returns (Black & Litterman, 1992). On the one hand, there has been recent progress in machine learning and 
AI in general, as well as in AI investment in finance in particular, and this further expanded the use of discrete 
probability models. Nowadays, reinforcement learning algorithms are extensively used in the algorithmic 
trading and hedging strategies and in the robo-advisors (Fischer, 2018). In addition, discrete probabilistic 
graphical models, such as Bayesian networks and hidden Markov models have been utilised more and more for 
fraud detection, anomaly detection in financial transactions, stress testing of banking systems (Bolton & Hand, 
2002). With growing financial markets becoming more and more complex as well as data driven, discrete time 
models will still have a key role to play in risk assessment, trading strategies and financial decisions. By 
integrating statistical learning techniques, Bayesian inference, and probabilistic deep learning, predictive 
modeling can be further improved and financial stability in such uncertain environment is foreseen to be more 
integrated.   
6.2 Discrete Models in Genetic Sequencing and Evolutionary Biology   
For genetic sequencing and evolutionary biology, the discrete probability and statistical models that have 
developed have become indispensable (and frankly, indispensable) tools for rigorous mathematical framework 
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to understand DNA sequences, genetic variation and evolutionary process. As biological sequences (DNA, RNA 
and proteins) must be discrete in nature, discrete probability distributions and stochastic processes have been 
used by researchers in order to infer evolutionary relationships, detect mutations and construct phylogenetic 
trees (Felsenstein, 2004). Feeling of efficiency of discrete models for large scale genetic data comes from rapid 
advancements in high through put sequencing technologies and computational biology.   
The Markov Chain Model is one of the most fundamental discrete models in genetics, and has been applied to 
many nucleotide transition and transversion problems in DNA sequences. The Jukes-Cantor (JC69) model 
assumes equal mutation probabilities among all four nucleotides and the Kimura Two Parameter model also 
includes different rate of transitions (purine-to-purine or pyrimidine-to-pyrimidine) and transversions 
(purine-to-pyrimidine or vice versa) (Kimura, 1980). To complete phylogenetic inference, more complex 
models like the General Time Reversible (GTR) model accommodate variable mutation rates for all pairs of the 
nucleotides (Yang, 1994). Similarly, Hidden Markov Models (HMMs) have also transformed the gene 
prediction and sequence alignment problem into a problem of hidden biological states, in this case exon-intron 
boundaries in DNA sequences (Durbin et al., 1998). Probabilistic gene annotation using HMMs is used, for 
example, to determine protein coding genes in newly sequenced genomes and to detect regulatory motifs in 
those regions of non-coding DNA. GENSCAN and HMMER are widely used in genomics and proteomics, and 
these models have been applied successfully in these tools (Eddy, 2011).  Discrete coalescent models are used 
in evolutionary biology to gain understanding of population genetics and inference of ancestors. The Kingman 
Coalescent Model provides a stochastic model of genealogical trees so that researchers can estimate the 
population size history, detect evolution of migration patterns and infer genetic bottlenecks (Wakeley, 2009). 
This framework is extended by the Structured Coalescent Model in order to include spatial and demographic 
structure, and is hence crucial for understanding pathogen evolution and species divergence (Hein et al., 2005).   
Bayesian phylogenetics has also become by far the most commonly used method of evolutionary history 
reconstruction with discrete models. In addition, Bayesian Markov Chain Monte Carlo (MCMC) sampling with 
software like BEAST or MrBayes allows probabilistic inference of phylogenetic trees based on integrating over 
uncertainty in model parameter (Drummond & Rambaut, 2007). These Bayesian frameworks are instrumental 
to analyzing viral evolution (e.g., COVID-19 phyletics) and epidemiological spread, as well as species 
diversification.  Discrete models are also another critical application in which discrete probability distributions 
are used in genome wide association studies (GWAS) where genetic variants are identified that are associated 
with diseases. Discrete logistic regression models are used to ascertain the likelihood of a certain genetic marker 
being connected to a disease phenotype (Visscher et al., 2017). Poisson models and negative binomial 
distributions are also usually used to model count data and detect differential gene expression between 
conditions in RNA sequencing (RNA-Seq) data (Love et al., 2014). With advancements in genetic sequencing 
technologies, discrete probabilistic models will have more and more important roles in personalized medicine, 
evolutionary genetics, as well as synthetic biology. Deep learning will most likely be used in the future to 
combine discrete evolutionary models to underpin more precise genetic predictions, evolutionary 
reconstruction, with large scale genomic datasets easily.. 
6.3 Applications of Discrete Probability in Encryption and Security   
Encrypted, cybersecurity, and cryptographic protocol utilize discrete probability that serves as mathematical 
foundation for randomness, unpredictability, and secure key generation. Since most cryptographic systems 
takes discrete structure (finite fields, modular arithmetic, ...), probabilistic techniques are important to provide 
secure communication channels, detect anomalies, and analyze threats (Goldreich, 2004). The expanded role 
of discrete probability in modern cybersecurity is due to recent advancements in post-quantum cryptography, 
probabilistic encryption, and stochastic security models.   
Discrete probability is one of the main applications in the context of cryptography for RNG, i.e. for key 
generation, encryption, and digital signatures, since random numbers are needed in all these tasks. Pseudo 
random number generators (PRNG) and the true random number generators (TRNG) are used in 
cryptographic systems depending on unpredictability (Menezes et al., 2018). Discrete probabilistic models like 
Markov chains and entropy based randomness extraction are used in many PRNGs to produce sequences that 
look like random but through these PRNGs, the sequences are computationally efficient. Discrete probability 
distributions are used to model TRNGs (meaning a TRNG generates randomness from physical, i.e. thermal 
noise or quantum, fluctuations) which guarantees high-security encryption keys. Probabilistic encryption 
schemes also employ discrete probability in that they add randomness to encrypt a message so that it is not 
vulnerable to attack. One of the earliest discrete probability models was Goldwasser and Micali’s (1982) 
probabilistic encryption model which supports the notion of discrete probability by ensuring that each plaintext 
has multiple possible ciphertexts unless using the secret key. Discrete Gaussian distributions are nowadays 
employed in modern encryption techniques, including homomorphic encryption and lattice based 
cryptography (Lyubashevsky et al., 2013), while providing the ability of secure computations of encrypted data.   
In public key cryptography, for instance, the Discrete Logarithm Problem (DLP) or the Integer Factorisation 
Problem (IFP) which are ‘hard’ mathematical problems under discrete probability form the basis of the security 
upon which algorithms such as RSA, Diffie-Hellman key exchange, and Elliptic Curve Cryptography (ECC) 
(Rivest et al., 1978) are built upon. Solving these problems in the polynomial time is hard as it is dependent on 
the probabilistic infeasibility of decrypting if we do not have the private key. Recently, discrete noise 
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distributions have been utilized to protect against quantum attacks by recent advancement on the quantum 
resistant cryptographic algorithms such as Learning With Errors (LWE) and Ring-LWE (Peikert, 2016).   
Indeed, discrete probability would also be crucial in intrusion detection systems (IDS) and anomaly detection 
in cybersecurity. Only recent machine learning based security systems relies on probabilistic models, such as 
Hidden Markov Models (HMMs) and Bayesian networks and Poisson distribution are used for detecting 
irregular login patterns, network anomalies and fraud detection (Denning, 1987), etc. These models allow to 
make estimates as to how likely it is that security breaches will occur by comparing observed behaviors with 
predicted probabilistic distributions. Discrete probability is applied in steganography and digital watermarking 
to embed secret message in images, audio, and video thereby minimizing detection (Petitcolas et al., 1999). 
Information embedding is modeled probabilistically to find the best locations while being resistant to statistical 
analysis attacks. It is precisely in the area of cryptographic security, intrusion detection and privacy preserving 
protocols that discrete probability is still at the core of cyber threats, which are becoming increasingly 
sophisticated. In future its role in securing digital communication will grow as development advances post-
quantum cryptography, zero knowledge proofs, and probabilistic blockchain consensus mechanisms.   
6.4 Discrete Statistical Methods in Disease Modeling and Pandemic Predictions   
 However, there are cross subsections within this domain that employ discrete statistical methods which are 
crucial in epidemiology, disease modelling, and forecasting pandemics among other things, to understand 
infection dynamics, progression of an outbreak, as well as the effect of public health interventions. To quantify 
uncertainty, estimate risks, and optimise containment strategies, we apply discrete probability models 
appearing from the fact that disease transmission are often discrete events (e.g., individual infections, 
recoveries and hospitalization) (Anderson & May, 2020).   
The Susceptible-Infectious-Recovered (SIR) model is one of the most used model in epidemic forecasting that 
discretizes the population into three compartments, the susceptible (S) individuals, the infectious (I) 
individuals, and the recovered (R) individuals (Kermack & McKendrick, 1927). Additional extensions of this 
model like the Susceptible-Exposed-Infectious-Recovered (SEIR) model incorporate a latent period in order to 
predict diseases, like COVID-19 or influenza (He et al., 2020). Discrete differential equations and Markov 
chains are used by these models to simulate the spread of infections over time and calculate the effectivness of 
implements of intervention (vaccinatiation, social distancing, quarantine), amongst others.   Pandemic risk 
assessment also widely coincides with discrete stochastic model application in the modeling of rare and 
uncertain outbreak events. This type of early forecast has been made in zoonotic spillover modeling or early 
outbreak detection (Lloyd Smith et al., 2005), by employing branching processes to assess the possibility of the 
disease extinction or explosion. Also, Poisson and negative binomial models are adopted for situations whereby 
the case distributions are overdispersed, such as super spreader events that are crucial in pandemics like Ebola, 
SARS and COVID 19 (Blumberg & Lloyd Smith, 2013).   
Discrete statistical methods are another important application, these being in Bayesian disease models where 
hierarchical Bayesian models are used to estimate infection rates, mortality risks and the impacts of 
interventions (Gelman et al., 2013). Real time phylogenetic analysis of viral genomes is possible with the 
Bayesian Markov Chain Monte Carlo (MCMC) techniques such as BEAST and Stan that allows for tracing of 
mutation pattern, transmission clusters and evolutionary origins of pandemics (Drummond & Rambaut, 
2007). Hospital resource planning and patient prognosis use discrete time Markov models for predicting ICU 
occupancy rates, hospitalization duration and ventilator demand when there are outbreaks (Wu et al 2020). 
These models empower health care policymakers to make data grounded decisions regarding strategic 
investment in resource allocations, in a manner that guarantees maximum efficiency of the critical care 
infrastructure during crises.   
Finally, agent based models (ABMs) have come to be widely used in pandemic simulation, wherein individual 
agents (people) interact in a stochastic environment (Ferguson et al. (2006)). Plugins such as these models 
capture heterogenous behaviours, mobility patterns, and policy effects, and are very good at evaluating the 
effect of non pharmaceutical interventions including masks mandates, lockdowns, and lockdowns. Syndromic 
surveillance and outbreak detection later require discrete probabilistic techniques as well, where working with 
real-time case reports, genomic sequences, mobility data, and a growing corp of digital footprints, hidden 
Markov models (HMM) and Bayesian networks use best practices of tracking inference to identify emerging 
threats (Reich et al., 2016). Further improvements were added to early warning systems employing machine 
learning enhanced discrete models using Twitter feeds, search engine queries as well as wearable health sensors 
to alert of unusual disease patterns before clinical diagnosis is made to an outbreak (Kass-Hout & Alhinnawi, 
2013). Discrete statistical methods will help the public health interventions, optimize vaccine distribution and 
mitigate the global health crises as disease surveillance systems keep becoming more and more data driven and 
computationally intensive. Future developments in Bayesian inference, network based epidemiology and AI 
driven disease modeling will increase predictive accuracy, improving pandemic preparedness and response 
strategies worldwide.   



1423 Kapil Dev Pandey et.al / Kuey, 30(11), 9484  

 

Figure 3- Applications of Discrete Probability in Finance, Biology, Security, and Healthcare 
Application Description Impact Fields of Application 

Finance & Risk 
Analysis: Discrete-
Time Models in 
Quantitative 
Finance 

Discrete probabilistic models, 
such as binomial asset 
pricing, Markov chains, and 
Monte Carlo simulations, 
improve financial risk 
assessment. 

Enhanced option 
pricing, credit risk 
analysis, and portfolio 
optimization for better 
financial decision-making. 

Investment Banking, 
Algorithmic Trading, 
Risk Management, 
Insurance 

Discrete Models in 
Genetic Sequencing 
and Evolutionary 
Biology 

Markov models, Hidden 
Markov Models (HMMs), and 
Bayesian phylogenetics are 
used for DNA sequencing and 
evolutionary analysis. 

Improved gene 
prediction, mutation 
detection, and 
evolutionary tree 
reconstruction for better 
insights into genetic 
variation. 

Genomics, 
Bioinformatics, 
Evolutionary Biology, 
Personalized Medicine 

Applications of 
Discrete Probability 
in Encryption and 
Security 

Probabilistic encryption, 
random number generation, 
and post-quantum 
cryptography secure digital 
communication. 

Strengthened 
cybersecurity through 
secure encryption 
protocols, fraud 
detection, and 
blockchain security. 

Cryptography, 
Cybersecurity, 
Blockchain, Digital 
Forensics 

Discrete Statistical 
Methods in Disease 
Modeling and 
Pandemic 
Predictions 

SIR/SEIR models, Bayesian 
epidemiological models, and 
agent-based simulations 
predict disease spread and 
intervention effects. 

More accurate pandemic 
forecasting, healthcare 
resource allocation, 
and outbreak detection. 

Epidemiology, Public 
Health, Disease 
Surveillance, 
Biostatistics 

 
7 Challenges and Open Research Problems in Discrete Probability and Statistics 

 
Although there have been great leaps forward in discrete probability and statistics, there are still issues, 
determinations in scalability, lack of data, hybrid modeling, and ethics. It is very important to address these 
challenges in order to increase the model accuracy, computational efficiency, and real world applicability in 
these other fields such as AI, finance, cryptography, and epidemiology. In particular, most discrete probabilistic 
models, including Hidden Markov Models, Bayesian Networks, and many other statistcal models based on 
Markov Chain Monte Carlo (MCMC) methods are computationally intractable, and become combinatorially 
intractable when they are applied to large-scale databases (or more precisely, large databases with massive 
search spaces). In many cases, exact inference is NP hard in the state space explosion, as the number of discrete 
states increases (Koller & Friedman, 2009). VI and parallelized sampling have better scalability, but usually 
come at the cost of introducing APPEX (Blei et al., 2017). Future research must be dedicated to developing 
scalable algorithms that do not compromise tradeoff between efficiency and accuracy, especially for the real 
time decision making in the area of cybersecurity, finance, as well as to autonomous systems.   
Such rich structured datasets are required for many discrete probabilistic models, but often hard to collect due 
to privacy concerns, small sample sizes, highly biased sampling, etc. (Vehtari et al., 2021). This is a very 
challenging problem in epidemiology, finance risk analysis, and social network modeling as real world datasets 
are generally incomplete, noisy, or very lacking labels. It is a large challenge to ensure that discrete models 
generalize well across multiple different datasets and do not overfit to particular areas. The mitigation of this 
issue can come from few shot learning, transfer learning and synthetic data generation techniques which yet 
need some more efforts. Such systems are many real world systems, which possess both discrete and 
continuous characteristics, and hence hybrid probabilistic models, as a combination of discrete probability 
distributions and continuous stochastic processes, are necessary. Specifically, the combination of Poisson 
processes (discrete jumps) with Brownian motion (continuous fluctuations) allows for modeling of market 
volatility (Cont & Tankov, 2004, p. 3) using discrete jump-diffusion models. Like with hybrid epidemiological 
models that join discrete agent based simulations with continuous differential equations, hybrid 
epidemiological models that combine discrete agent based simulation with differential equations are used to 
improve forecast of a pandemic (Ferguson et al., 2006). Despite this, there is yet an open problem to construct 
efficient hybrid models that remain tractable while retaining interpretability.   
Predominant with the use of probabilistic AI models in the criminal justice system, hiring, diagnosis of medical 
issues, or finance are issues with fairness, transparency, as well as bias (O’Neil, 2016). While such discrete 
probabilistic classifiers as Bayesian networks and decision trees may not unwittingly effect discriminate, they 
may reproduce the biases in the training data. Explicit examples include the use of discrete probability 
distributions in predictive policing models that can reinforce what has been shown to reinforce racial and 
socioeconomic biases in law enforcement decisions (Benjamin, 2019). Also, risk communication to patients 
and policymakers in particular is difficult sometimes due to uncertainty quantification in medical diagnostics. 
The future research would be on explainable AI (XAI), fairness aware probabilistic models, and robust decision 
making frameworks to deploy the ethical AI.   
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8 Discussion 
 
Since the theory of discrete probability and statistical methods has evolved so rapidly, it has completely 
transformed many fields such as machine learning, finance, epidemiology, cryptography, the social network 
analysis, to name a few. This review has presented some major advances mainly in Bayesian modelling, non 
classical distributions, graph based network models and probabilistic security frameworks. Although these 
improvements were made, there are still many open questions and challenges – namely on the scaleability, 
computational complexity, hybrid modelling, and regarding the ethical aspects. The purpose of this section is 
to discuss how recent developments affect research in the discrete probability and statistics, explore what is 
limited up to now, and what can be done in the future.   
By integrating probabilistic graphical models, stochastic processes, and deep learning techniques, discrete 
probability models can now be applied to problems of large scale and real world. For sequence modeling tasks 
such as speech recognition and text generation driven by the machine learning and natural language processing 
(NLP), adding deep neural networks to a combination of the Hidden Markov Models (HMM) has produced 
great improvements (Jurafsky & Martin, 2021). In both finance and risk analysis, the same has occurred toward 
the refinement of discrete-time asset pricing models that have yielded sharper volatility predictions and better 
portfolio optimization strategies (Cont & Tankov, 2004).   
Whether or not in epidemiology and disease modeling (e.g., Poisson based outbreak detection and Bayesian 
epidemiological models) improved pandemic forecasting and intervention planning (Ferguson et al. 2006). In 
addition, the construction of the post quantum cryptographic schemes on the discrete probability distribution 
has led to improved security of data in cryptography and cybersecurity against the threat of quantum 
computing (Lyubashevsky et al., 2013). These advances point to the fact that starting in modern computational 
and sci But it has been made despite the fact that several critical challenges hold back widespread adoption and 
effectiveness of discrete probability methods. As we scale and in general, computational complexity becomes 
one of the major issues. On the other hand, Markov Chain Monte Carlo (MCMC) methods and Bayesian 
networks are many probabilistic models that show exponential increase in computation time with growing 
dataset size (Blei et al., 2017). Better scalability in VI and parallel computing has also been achieved at the 
expense of accuracy. Future research must speed approximative inference techniques that do not require so 
much computations and retain a high accuracy.   
An additional pressing problem is data availability as well as model generalization. The problem addressed by 
these discrete statistical methods is that many of them rely on well-structured, high quality datasets that are 
often missing, biased, or only available because of such potential privacy risks (Vehtari et al., 2021). In 
particular, this is a problem that is common to medical data, financial transactions, and cybersecurity logs, 
where access to labeled data is available but limited, making a difference on the performance of the models. 
However, transfer learning, few-shot learning and synthetic data generation can potentially aid but effectively 
solving the problem is an open research question. In addition, hybrid probabilistic models of this type are 
needed to integrate discrete and continuous parts. Examples of such phenomena representative of these dual 
discrete transitions and continuous fluctuations are financial markets, epidemiological spread, and climate 
modeling. Albeit this gap is not filled statically with simple hybrid models such as jump-diffusion models in 
finance or agent based models in epidemiology that still continue to require manual fine tuning and domain 
specific expertise (Cont & Tankov, 2004). Next the future research should be about developing the automated 
hybrid modeling techniques flexibly making discrete and continuous representations on that basis of the data 
patterns.   
The ethical concern that fairness, transparency and bias concern are held serious by the significant use of 
Probabilistic AI models in criminal justice, finance and healthcare. Although discrete probabilistic models such 
as Bayesian classifiers and Markov decision processes seek to be well calibrated against the truth, they may 
unknowingly perpetuate the biases that are in the training data and yield discriminatory outcomes (O’Neil, 
2016). As an example, predictive policing models can overpolicing of marginalized communities by predicting 
crime risk probabilistically, which enforces historical inequities (Benjamin, 2019). Likewise, in automated 
financial lending systems there are probabilistic models assessing loan default risks that may unintentionally 
discriminate some demographics thereby resulting in algorithmic bias in credit scoring. Future research should 
target bias corrected algorithms, fairness aware probabilistic models ensuring that will make decision that will 
be fair to any of the parties involved while being accurate about information at hand, and the explainable 
artificial intelligence (XAI) techniques.   
 

9 Conclusion 
 
Modern data driven decision making is still in your fingertips and it continues to be applications in AI, finance, 
epidemiology, cryptography and security. Nevertheless, issues of scalability, data constraints, hybrid modeling, 
and ethical deployment of AI have to be addressed to bring them to fruition. The future research should work 
on the computational efficiency, model fairness, and integration of hybrid probabilistic framework for the 
creation of robust, responsible and reliable AI system. Solving these problems will ensure that discrete 
probability and statistics will continue to be the cornerstone of scientific discovery, technological innovation 
for years to come.   
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10 Future scope of the study 
 
In order for discrete probability and statistics to be preserved in their future, scalable improvements along with 
hybrid modeling, ethical AI and quantum resistant security, and interdisciplinary applications should be 
emphasized. To cope with big scale datasets, the computational bottlenecks in Markov Chain Monte Carlo 
(MCMC) methods as well as probabilistic graphical models can be addressed by approximate inference 
techniques, deep probabilistic programming and parallel computing. Such applications are handled 
particularly requiring adaptive hybrid frameworks that build on the integration of the discrete and continuous 
models. Fairness aware Bayesian models, explainable artificial intelligence (XAI) and uncertainty 
quantification are needed in probabilistic AI and decision-making because of their ethical concerns in the fields 
of healthcare, finance and criminal justice. There is a need for progress in post quantum cryptography, lattice 
based encryption, and quantum inspired probabilistic inference to secure data security that rises from the need 
for quantum computing. At the same time, Bayesian phylogenetics, probabilistic causal discovery, and the 
network based stochastic modeling will revolutionalize probabilistic quantitative biology in general, and 
biostatistics, genomics, computational neuroscience, in particular. Since machine learning and discrete 
statistical methods merge, future research will put emphasis on the automated probabilistic reasoning, the real 
time decision making and the intelligent AI powered statistical models that will bring robust, interpretable, 
efficient probabilistic systems in all disciplines. 
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