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ARTICLE INFO ABSTRACT

In recent years, discrete probability and statistical methods have made
impressive developments that keep impacting all kinds of areas which include
computer science (in particular, machine learning and finance), epidemiology,
cryptography and social network analysis. This paper studies more recent trends
of discrete probability via a systematic review on recent trends in Bayesian
modeling, non classical distributions, stochastic process, discrete time financial
models, as well as probabilistic AI frameworks. Further, we discuss emerging
applications in disease modeling, post quantum cryptography, and network
science, illustrating how discrete probabilistic methods are converging with deep
learning based and hybrid modeling approaches. While highly successful at
increasing accuracy, efficiency, and scalability of the predictions, all are still
grappling with computational complexity, ethical (as well as interpretable)
concerns in probabilistic decision making. This review evaluates the strengths
and weaknesses of current model, provides gaps of current research and
perspectives on future directions with techniques that are scalable to inference,
hybrid probabilistic framework and fairness aware AI model. These studies
produce synthesis of important developments and aim to provide researchers,
practitioners an overview of modern discrete probability applications and some
future research opportunities.

Keywords: Discrete probability, Bayesian inference, stochastic models, Markov
chains, probabilistic AI, financial risk modeling, epidemiology, quantum
probability

1 Introduction

The probability distributions of interest are called discrete probability and they occur when the outcomes are
countable, being either finite or infinite (Grimmett & Stirzaker, 2020). Discrete probability is different than
continuous probability in that it deals with smooth distributions, as opposed to Bernoulli trials, Markov chains
and Poisson processes (Ross, 2019). Based on this material, each of theses models plays a key role in decision
making as well as stochastic modeling and combinatorial analysis. The probability mass function (PMF),
expectation, and variance serve as key descriptors of discrete probability distributions (Casella & Berger, 2021).
However, discrete statistics is concerned with the collection, analysis, and inference of data that is naturally
categorical (discrete) or count based. Discrete data is analyzed either using statistical methods like contingency
tables, logistic regression, and chi square tests or using statistical methods (Agresti, 2018). This is an important
field in modeling count data in real world, especially in social sciences, healthcare and engineering (McCullagh
& Nelder, 2019).

Modern applications of discrete probability and statistics span various domains. Probabilistic graphical models
constitute machine learning and artificial intelligence progress in speech recognition, text processing, and
robotics (Murphy, 2012). Discrete statistical techniques become fundamental tools of cryptography,
information theory and network security (Goldreich, 2019). Discrete probability models are used to track
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disease spread or genetic mutations in biostatistics and epidemiology (Anderson & May, 2020). Poisson
processes and geometric distribution are used in finance to model rare events, e.g. credit default and market
crash (Cont & Tankov, 2021). As discrete probability and statistics is eventually becoming more and more
relevant with the growing availability of large scale discrete datasets, the use of discrete probability and
statistics is becoming more and more important. Further advances in stochastic computing, high dimensional
inference and Bayesian frameworks give rise to their applications to be essential tools in contemporary
scientific and technological progress (Jordan, 2018).

Discrete probability and statistics are very important in modern applications in various disciplines.
Probabilistic graphical models — Bayesian networks and hidden Markov models for illustration are provided
— are used in machine learning and artificial intelligence to advance in speech recognition and natural language
processing as well as in decision making algorithms (Murphy, 2012). Discrete Probability plays a fundamental
role in the cryptographic algorithms, network security, and the error detection in the digital communications
(Goldreich, 2019). Poisson distributions and Markov models are used by biostatistics and epidemiology to
model disease spread and survival analysis (Anderson & May, 2020). Discrete stochastic models are used in
the financial risk analysis to assess credit default probabilities, model rare financial events, and to optimize
investment strategies (Cont & Tankov, 2021). As high dimensional discrete datasets become more widely
available, the computational and statistical techniques become new—Bayesian inference, stochastic
optimization, and probabilistic machine learning—expand the domain in which discrete probability and
statistics are viable. These are indispensable tools for modern scientific and technological innovations (Jordan,
2018).

Recently, the field of discrete probability and statistics has gone through a series of transformations, which are
mostly due to the rise in the complexity of modern data, improvement of computing method, and broader
diversification of the range of applied disciplines. Consolidation of emerging research, key trends identification
and future research directions demand for a comprehensive review of recent advancements. Probabilistic
models and inference techniques that use discrete structures to better solve problems such as decision making,
optimization, and uncertainty quantification have arisen as a result of the rapid evolution of machine learning,
artificial intelligence, and data science (Murphy, 2012). Bayesian networks, probabilistic graphical models and
discrete Markov processes now constitute integral methods to Al driven applications, and it is necessary to
evaluate their most recent developments and improvements considerations (Jordan, 2018). More recently,
growing challenges in big data and computational statistics have also led to the need for new approaches for
dealing with high dimensional discrete data, categorical distributions and stochastic modeling (Casella &
Berger, 2021). However, many of these datasets are becoming large scale and arise in domains such as
genomics, finance, cybersecurity, and epidemiology, and they require statistical techniques to be revised to
both bring about efficiency, accuracy, and scalability. For instance, these are now being used to track disease
outbreaks, detect fraud, and optimize investment strategies and, therefore, continuous methodological
advancements are required (Anderson & May, 2020).

Furthermore, algorithmic and theoretical probability has recently made progress in a few breakthroughs that
enable us to analyze random structures, optimize discrete probability distributions, as well as improve
computational efficiency. This popularity of the field is highlighted by ways in which these innovations provide
a structured review to enable researchers to have an updated synthesis (Goldrich, 2019). This paper attempts
to bridge the gap between solid progress in theory and its applications in discrete probability and statistics
through a review of recent developments and by providing leads to future research and to innovation in the
theory of discrete probability and statistics.

2 Objectives of the Study

I Examine recent theoretical advancements in discrete probability, including developments in Bayesian
inference, stochastic processes, non-classical distributions, and probabilistic graphical models.

II Analyze computational techniques that enhance discrete probabilistic modeling, such as Markov Chain
Monte Carlo (MCMC), variational inference, hybrid modeling approaches, and scalable deep probabilistic
frameworks.

ITT Explore interdisciplinary applications of discrete probability in machine learning, finance, epidemiology,
cybersecurity, and network science, emphasizing its growing impact in real-world problem-solving.

IV Identify challenges and open research problems, including scalability issues, computational complexity,
gaps in data availability, and the need for hybrid discrete-continuous probabilistic models.

V By achieving these objectives, this study aims to serve as a valuable resource for researchers, academicians,
and practitioners, offering critical insights into the evolving landscape of discrete probability and its
potential for driving future innovations.

3 Methodology
This paper is a systematic and systematic approach to the review of the recent progress in the discrete

probability and statistics, so that it is comprehensive, unbiased and rigorously academic synthesis of previous
research. The methodology includes selecting literature, categorising them in themes, performing comparative
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and critical analysis, and this provides for a highly discussed theoretical development, computational
techniques, as well as applications in real world.

In this first step, I conducted systematic literature search over the reputable academic database of Google
Scholar, IEEE Xplore, Springer link, Science Direct and arXiv. Only publications from the period of the last ten
years (2013—2024) were taken into account to maintain the relevance of the review to the current state of affairs
in the field. Keywords used were discrete probability, Bayesian inference, Markov chains, probabilistic
graphical models, stochastic processes, quantum probability, and statistical decision making, and they were
used as a criterion to search. Peer reviewed journal articles, influential conference papers, high impact
theoretical contributions were filtered out to prioritise them. Old and redundant studies were filtered out. A
criterion of inclusion-exclusion was applied to the dataset to refine it. A list of studies was selected based on
introduction of novel theories, computer techniques or real world applications to discrete probability. There
have been also included papers with comparative analyses of classical and modern approaches. On the other
hand, studies without empirical validation or quantitative analysis, studies without relevance to discrete
modeling, and all non English publications without publicly available full texts were excluded.

Based on key themes, they were categorized once relevant studies were identified. A structured analysis was
conducted in that they were organized based on the relevant studies identified. Finally, the review focused on
theoretical contributions that include progress in discrete probability distributions, stochastic models and
Bayesian inference, together with computational progress in Markov chain Monte Carlo, variational inference,
and probabilistic deep learning. In addition, considerable effort was spent on applications in real world such
as machine learning, finance, cybersecurity, epidemiology, and quantum computing to give a interdisciplinary
flavor to the impacts of discrete probability models. Next, a comparison was made between different
approaches in order to determine strengths and weaknesses. The areas of trends, computational challenges and
open problem were critically investigated by reviewing the selected studies. In cases, where applicable,
validations were performed through quantitative comparisons, algorithmic performance metrics and case
studies. This ensured that the review was not only theoretical but practical, as discrete probabilistic models
applied to real life situations are shown.

After filtering out, the insights were synthesized into a structured discussion at the end point, making it clear,
accessible and useful for all the researchers, practitioners and students. This paper provides a coherent account
of what emerging trends are, what are their implications and what future research directions should be
followed. This in turn provides a critical methodology that should also be described as objective, rigorous and
balanced review of discrete probability and statistical advancements, making this review a resource for further
research in that field.

4 Emerging Trends in Discrete Probability

4.1 Non-Classical Distributions: New Probability Distributions and Extensions

In the recent years, discrete probability field has been witnessed with the advancement of non classical
probability distributions to extend the traditional models to cope with the complexities of contemporary data
analysis. This has always been done with classical discrete distributions, like binomial, Poisson, geometric, and
negative binomial, in probability theory. But now, with the rising need for flexibility, responsiveness and higher
modeling accuracy, researchers have started to come up with new probability distributions and generalizations
of those classical models. The development of generalized discrete distributions is one of the key advancements
in nonclassical distributions as it includes more parameters to improve the modeling capability. The q-series
distributions (e.g., the q-Poisson and g-binomial distributions) provide a deformed form of their classical
counterparts by a parameter \( q \) that modifies the extent of departure from the standard form
(Charalambides, 2019). The classical models that they have found applications in do not suffice in cases where
complex dependencies are present; they have been used in quantum probability, statistical mechanics, and in
combinatorial optimization. Major extension in the context of fractional calculus is the discrete Mittag-Leffler
distribution, which arises from the same family of distributions (geometric and the negative binomial
distribution) as in Pillai and Jayakumar (2021). In particular, this distribution has been used in modeling heavy
tailed discrete data in finance, reliability engineering and epidemiology where events show long rang
dependence and non exponential waiting times.

Compound and mixture distributions have also become popular because they can model over-dispersed and
heterogeneous discrete data. Examples of such distributions that are more flexible in capturing real world count
data departing from standard Poisson or negative binomial assumptions are the Poisson-inverse Gaussian
(PIG) distribution and the negative binomial-Lindley distribution (Karlis & Xekalaki, 2020). The use of these
distributions has been wide spread in actuarial science, biological modeling and risk management. The
development of Dirichlet process based discrete distributions resulting from new memoryless (Bayesian)
nonparametric approaches to modeling complex categorical data has also occurred (Hjort et al., 2019) since
the rise of such approaches. To some extent they have completely changed the game in areas like machine
learning, genetics or any other field where a discrete probability distribution was too restricted. These non
classical distributions offer powerful extensions as applications of discrete probability research emerges that
bridge theory and application. Due to their continued development and refinement they will continue to
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contribute highly to addressing new challenges presented in data science, finance, engineering and artificial
intelligence, considering the applicability of discrete probability models.

4.2 Advances in Discrete-Time Markov Chains and Hidden Markov Models (HMMs).

DTMCs and HMMs have been standard workhorses in probability modeling since long time and have
applications in machine learning, finance, bioinformatics, speech recognition along with other areas of
reliability engineering. Over the past few years, these models have been improved in scalability, computational
efficiency, and increasing predictive power in order to be applied to more sophisticated and higher dimensional
problems. The most important advancements in the DTMCs research have been the introduction of higher
order Markov chains and non homogeneous Markov models (Iosifidis & Vlahavas, 2020). The memoryless
property of traditional DTMCs is where the probability of transition to the next state solely depends on the
current state. However, models of higher order are able to depend on more than one past states and this gives
more accurate models for the applications such a finantial time series analysis, genetic sequencing, and
reinforcement learning. Moreover, the time varying and non homogeneous Markov models have been
introduced to capture dynamic and evolving system, e.g., climate change pattern and market fluctuation (Chen
et al., 2022). Recent developments concerning state estimation, model flexibility and interpretability in the
realm of Hidden Markov Models (HMMs) are limited by its ability to overcome limitations. In real world
applications, the number of hidden states and transition probabilities may need not be fixed, and this may not
be indicated while using traditional HMM. In order to address these challenges, Bayesian nonparametric
HMMs have been developed by researchers, where the number of states can grow dynamically depending on
the complexity of the observed data (Teh & Jordan, 2019). In the area of speech processing, genomics, and
topic modeling, such models have proven to be particularly useful, since the true underlying state structure is
not known.

Additionally, deep learning enhanced HMMs have proven to be a very powerful alternative to the classical
HMM. Researchers have integrated HMMs with neural networks, recurrent neural networks (RNNs), and
transformers for great improvement of tasks like speech recognition, handwriting recognition, and financial
forecasting (Graves & Jaitly, 2021). By combining the sequential dependencies in HMMs with the
representational power of deep learning, these hybrid models surpass the abilities of standard HMMs in
difficult time series prediction problems. Reinforcement learning is also applied to HMM training and
optimization, which is another important step. EM algorithms for HMM training are traditionally slow, and
may experience local optima. In recent years, policy gradient methods and deep Q learning algorithms have
been studied in the context of optimization of HMM based decision processes especially in robotics, automated
trading and health care diagnostics (Silver et al., 2020). These advancements are extending the applicability of
research in discrete time Markov chains and HMMs in more and more domains as research in this area
continues to evolve. Markovian modeling, blended with modern computational techniques, has been integrated
for the adaptive speech recognition systems and high frequency trading to the next generation of probabilistic
modeling and decision making systems.

4.3 Impact of Quantum Probability Models

Quantum probability models have emerged as a transformative extension of classical probability theory,
providing new mathematical frameworks for decision-making, machine learning, cryptography, and quantum
computing. Unlike classical probability, which relies on Kolmogorov’s axioms and assumes that probabilities
are real-valued and additive, quantum probability is based on the principles of Hilbert space theory, non-
commutative operators, and probability amplitudes, allowing for more flexible representations of uncertainty
and complex correlations (Busemeyer & Bruza, 2019). These models have gained attention for their ability to
explain paradoxical phenomena in human cognition, optimize quantum computing algorithms, and enhance
probabilistic reasoning in artificial intelligence. One of the most significant impacts of quantum probability
models has been in cognitive science and decision theory. Classical probability struggles to explain certain
inconsistencies in human decision-making, such as the order effects in survey responses, the conjunction
fallacy, and violations of the sure-thing principle observed in behavioral economics. Quantum probability
provides a superposition-based framework that captures these effects by allowing for context-dependent
probability amplitudes, leading to more accurate predictive models in psychology and behavioral economics
(Khrennikov, 2020). In machine learning and artificial intelligence, quantum probability has led to the
development of quantum-inspired models for pattern recognition, natural language processing (NLP), and
probabilistic graphical models. For example, quantum Bayesian networks and quantum Markov models
generalize classical probabilistic models by incorporating non-commutative probability spaces, improving
inference capabilities in high-dimensional and uncertain environments (Zhang et al., 2021). Additionally,
quantum-inspired neural networks leverage quantum probability principles to enhance deep learning
architectures, making them more efficient in handling entangled dependencies in sequential and relational
data (Haven & Khrennikov, 2019).

Another crucial domain impacted by quantum probability is cryptography and quantum computing. Classical
probability models are foundational to conventional cryptographic techniques, such as random number
generation, key distribution, and zero-knowledge proofs. However, with the rise of quantum cryptographic
protocols, such as quantum key distribution (QKD) and post-quantum cryptography, quantum probability
models provide a rigorous mathematical basis for ensuring security in a quantum computing environment
(Nielsen & Chuang, 2020). The ability of quantum probability to model superpositions, entanglement, and
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uncertainty allows for the design of unconditionally secure cryptographic protocols that are resistant to
classical and quantum attacks. Furthermore, in stochastic processes and statistical mechanics, quantum
probability is being applied to model non-classical random processes, such as those found in quantum walks,
quantum chaos, and open quantum systems. These applications have profound implications for quantum
algorithms, material science, and quantum statistical inference, enabling researchers to analyze systems where
classical probability fails to capture the underlying stochasticity (Attal et al., 2019). The growing impact of
quantum probability models is reshaping multiple fields by providing alternative probabilistic reasoning
frameworks that overcome the limitations of classical models. Whether in human cognition, Al, cryptography,
or quantum computing, these advancements continue to drive the next wave of innovations in probability
theory, information processing, and complex system modeling.

4.4 Entropy-Based Measures: Applications in Data Compression and Signal Processing
Entropy based measures are important in data compression and signal processing, and as a mathematical
description of uncertainty, information content and redundancy of discrete data. Entropy is based on
Shannon’s Information Theory and is the fundamental tool for data encoding and noise reduction which is used
in modern computing and communication systems including the optimization of feature extraction (Shannon,
1948). As big data, machine learning, real-time signal analysis, have been growing at a rapid pace, entropy
based technique transformed to enable high efficient compression algorithms, better transmission protocols,
and better signal reconstruction methods. Entropy is used in data compression to find the minimum
redundancy while maintaining the important part of information. The lossless compression algorithms like
Huffman coding and Arithmetic coding are based on Shannon’s Entropy Coding Principle, meaning that
symbols with higher probability are assigned shorter codes, resulting into lesser storage space (Cover &
Thomas, 2006). In lossy compression, such as JPEG for images and MP3 for audio, entropy-based methods
like Rate-Distortion Theory balance compression efficiency with minimal perceptual quality loss (Sayood,
2017). Yet these ways have made data storage, multimedia streaming, cloud computing to all an efficient
bandwidth utilization making methods.

The entropy measures are widely used for feature extraction, pattern recognition and noise filtering in signal
processing. Spectral entropy quantifies the signal complexity, which is useful in the EEG brainwave analysis,
speech recognition and biomedical imaging (Rosso et al., 2001). The entropy based thresholding improves the
denoising techniques in speech and audio processing by discriminating between signal and random noise.
Wavelet entropy also facilitates detection of faults, analysis of ECGs, and analysis of geophysical data (Zhao et
al., 2011), as well as non-stationary signals. Like that, entropy based methods are also critically important to
cryptography security, and in anomaly detection. Shannon entropy and Rényi entropy are applied for detecting
irregularities in network traffic, fraud detection and malware analysis, where deviations from expected entropy
levels are indicators of potential security threats (Verma & Ranga, 2019). Likewise, entropy prevents the feature
representation from becoming robust in biometric authentication systems such as in the Fingerprint, Iris, and
Facial recognition systems. With growing volume and complexity in the data, entropy based approaches will
further improve compression efficiency, real time signal processing, etc. It is expected that there would be
future research towards adaptive entropy based learning models, using deep neural networks with entropy
regularization to increase data efficiency, robustness and computational scalability on various technological
domains. Following is the table of Trend and Field of application.

Figure 1 - Trend & Field of application

Trend Description Impact Fields of
Application
Bayesian Expansion of Bayesian inference, including  Enhanced uncertainty Machine
Modeling Hamiltonian Monte Carlo (HMC) and quantification, better model Learning,
Growth Variational Inference (VI), improving interpretability, and improved Finance,
computational efficiency. predictive accuracy. Epidemiology,
Genomics
Non-Classical = Introduction of generalized discrete Improved statistical modeling for Risk  Analysis,
Distributions distributions (e.g., q-series, Mittag-Leffler) = over-dispersed, heavy-tailed, and = Bioinformatics,
to model complex count-based data. non-homogeneous discrete data. = Stochastic
Modeling
Advancements Integration of deep learning with HMMs Improved speech recognition, NLP, Speech
in Hidden for sequence modeling and dynamic state anomaly detection, and time- Processing,
Markov estimation. series forecasting. Cybersecurity,
Models Finance
(HMMs)
Quantum Application of quantum-inspired = Enhanced predictive modeling, AlI,
Probability probability in decision-making, machine improved encryption security, Cybersecurity,
Models learning, and cryptography. and better representation of Cognitive
cognitive uncertainty. Science,
Quantum

Computing
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Discrete-Time Refinements in binomial asset pricing, More accurate financial = Finance,
Financial Markov-based risk models, and Bayesian forecasting, = improved  risk Algorithmic
Models portfolio optimization. assessment, and adaptive Trading, Risk

investment strategies. Management

Graph-Based Use of stochastic block models (SBMs) and More accurate detection of Social Media
Discrete Exponential Random Graph Models communities, influence = Analytics,
Models in (ERGMs) for analyzing network structures. = propagation, and misinformation = Political Science,
Social tracking. Behavioral
Networks Economics
Handling Development of tensor decompositions, Faster processing and analysis of = Big Data
Large-Scale probabilistic data structures, and parallel —high-dimensional discrete = Analytics,
Discrete Data  computing frameworks. datasets, enabling real-time Genomics, NLP,

decision-making.

Al

Discrete Use of Bayesian epidemiological models, Improved real-time pandemic Public Health,
Statistical Poisson-based outbreak detection, and predictions, better resource Epidemiology,
Methods in agent-based simulations. allocation, and optimized = Biostatistics
Disease intervention strategies.

Modeling

Discrete Advances in post-quantum cryptographic Increased  security  against Cybersecurity,
Probability in algorithms (LWE, Ring-LWE) and quantum attacks, better key Data Privacy,
Cryptography probabilistic encryption methods. randomness, and more secure Blockchain

communication.
5 Recent Developments in Discrete Statistics

5.1Discrete Probability in Machine Learning and Natural Language Processing (NLP)
Probabilistic predictions as well as the optimization of decision making processes are the fundamental role of
discrete probability in machine learning (ML) and natural language processing (NLP), since it provides a
mathematical ground for uncertainty modeling. For many real world problems in ML and NLP, these data are
inherently discrete, such as categorical, sequential, or count based. Discrete probability is applied for robust
solutions of many interesting problems in Bayesian inference and probabilistic graphical models (PGM),
hidden Markov models (HMM) and deep generative techniques.

Probabilistic classification, uncertainty estimation and latent variable modeling are crucial parts of machine
learning and use discrete probability. Some algorithms such as Naive Bayes classifiers use discrete probability
distributions like multinomial and Bernoulli distributions to solve text, image, and spam detection problems
(Murphy, 2012). Finally, discrete probability, Bayesian networks and Markov random fields, are the ones that
probabilistic graphical models, including Bayesian networks and Markov random fields, use to model the
dependencies among variables in structured data. They are widely applied in medical diagnosis, speech
recognition, as well as fraud detection, wherein decisions need to be made under uncertainty (Koller &
Friedman, 2009). Discrete probability is critical for language modeling, text generation, sequence prediction,
in NLP. For example, classical models such as n-gram language models assume Markov and predict the
probability of words in a sequence based on it (Jurafsky & Martin, 2021). The most widely applied HMMs and
CRFs are based on discrete probability and have been deployed for speech recognition, part-of-speech tagging,
as well as for named entity recognition (NER) (Manning & Schiitze, 1999). The first type of models, learn
sequential dependence in text and speech and allow structured predictions in NLP applications. Deep learning
has brought us to an era where discrete probability remains an important element of probabilistic deep
generative models like variational autoencoders (VAEs), restricted Boltzmann machines (RBMs), and discrete
latent variable models, and the field has come a long way considering the situation in 2009. These methods
combine discrete probability distributions in order to create text, image, and structured data representations
that are realistic. Discrete probability is used for token level probability estimation in tasks like text generation,
summarization and machine translation (Vaswani et al., 2017) in state-of-the-art NLP models like GPT and
BERT, and transformers are used to power those models. Additionally, RL models are very dependent on
discrete probability for their policy learning and choice making. Reinforcement learning algorithms are used
to optimize conversation in dialogue systems, chatbot’s, etc. by using discrete probability distributions over
possible actions to choose the optimal conversational response (Sutton and Barto 2018).

Uncertainty quantification also heavily relies on discrete probability in order to use Bayesian deep learning
techniques to increase model reliability and meaning. Discrete priors and posterior distributions are used in
Bayesian models that use for text classification, sentiment analysis and topic modelling (Blei et al., 2003). Now,
as machine learning and NLP evolve, discrete probability is still a subroutine of indispensable importance for
designing robust and interpretable probabilistically sound models. It is applicable in sequence modeling,
generative Al, uncertainty estimation, and decision making and will remain relevant in the deep learning and
Al driven language technologies.

5.2 Methods for Handling Large-Scale Discrete Data

Large scale discrete data are being produced in abundance in a variety of areas such as machine learning,
natural language processing (NLP), bioinformatics, and network analysis, and the need is felt to have fast
computational and statistical methods for processing and storing as well as analyzing these data. However,
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massive discrete dataset often has dimensionality, sparsity, and computational complexity in traditional
statistical concept. Recently advanced approaches have advanced a various range of methodologies, like
probabilistic modelling, compressed information matters, electronic computing and executable Bayesian proof.
The use of probabilistic scheme graphical models, such like Bayesian networks and Markov random fields
(MRFs) one of the most important progress in handling high dimensional discrete data, because it permits
structured representation dependencies in high dimensional discrete spaces (Koller & Friedman, 2009).
However, due to sparsity and conditional independence, these models have low computational complexity and
thus are well suited for applications, for example, the social network modeling, fine genomic data analysis and
document classification. Approxi mate inference techniques like Markov Chain Monte Carlo (MCMC) and
Variational Inference (VI) can be another power method since they can estimate computationally challenging
probabilistic model efficiently (Blei et al., 2017). Many discrete probabilistic models have been tackled by the
MCMC based methods including Gibbs sampling and the Hamiltonian Monte Carlo. On the other hand, using
MCMC requires one to run just that sample many times, which makes it unsuitable for large scale datasets in
NLP and AI and VARIATIONAL INFEWERENCE is a scalable alternative which approximates posterior
distributions deterministically.

In the case of high dimensional discrete data, dimensionality reduction techniques as random projections,
feature hashing, and word embeddings are very important. BERT and word2vec embeddings are used as
preprocessors in NLP that transform high dimensional sparse textual data into lower dimensional dense
representation in line with the semantic relationships (Vaswani et al., 2017). For example, for such discrete
datasets, latent structure can be discovered using the tensor decomposition methods like Singular Value
Decomposition (SVD) and Non-negative Matrix Factorization (NMF) for example in the recommendation
system and social network analysis (Cichocki et al., 2009). Handling large scale discrete data has also been
done by parallel and distributed computing frameworks like Map Reduce, Apache Spark, TensorFlow among
others. Due to such frameworks, represented by HDFS, Hive, Pig, SparkSQL, Spark streaming, and Mesos,
terabyte scale categorical data in bioinformatics, computational linguistics and large scale probabilistic
modeling (Zaharia et al. 2016) can be processed efficiently. A second growing method, which is based on
probabilistic data structures like Bloom filters, Count Min Sketch, and HyperLoglog [Cormode &
Muthukrishnan, 2012] completely populates the large scale discrete data into a space efficiently representation
but allows fast approximate queries. For the studies we performed this is true in network security, streaming
data analysis, and real time anomaly detection where exact computation is not possible due to memory and
time constraints.

These advanced statistical, mathematical, and computational techniques are becoming indispensable because
as data scale and complexity grows, data at such a scale and complexity are always so large. Future research is
likely to use hybrid methods of exploitation, such as deep learning, probabilistic models, and distributed
computing to improve scalability and efficiency even further in discrete data analysis.

5.3 Growth of Bayesian Modeling Techniques

During the past decade, there have been great improvements in computational methods, efficient inference, as
well as interdisciplinary applications of Bayesian modeling. These traditional frequentist approaches often lack
the ability for quantifying uncertainty, the ability to infer high dimensional parameters, and the use of small
data scenarios, while Bayesian methods offer a proper probabilistic framework, which incorporates prior
information and updates their beliefs based on the growing new data (Gelman et al., 2013). Innovations in
Markov Chain Monte Carlo (MCMC), Variational Inference (VI), Bayesian deep learning, and probabilistic
programming languages have made the growth of Bayesian modeling more scalable and applicable to complex
real world problems.

Hamiltonian Monte Carlo (HMC) and Stochastic Variational Inference (SVI) have been major catalysts for the
expansion of Bayesian techniques, since they have made HMC computational feasible for inference on the
natural parameter of most distributions, while proving effective for draw sampling in variational Bayesian
inference (VBGI). Classical MCMC has advanced significantly to the stage where HMC, which improves MCMC
by incorporating gradient based sampling, has sped up Bayesian computation in high dimensional parameter
spaces to the point of being practical (Neal, 2011). As with SVI, Bayesian inference on large datasets can be
done via optimization rather than expensive sampling, and SVI does this for streaming data and large scale
probabilistic models as well (Hoffman et al., 2013). Furthermore, Bayesian deep learning has also identified
reasons to adopt Bayesian modeling such as in estimation of uncertainty, robustness, and interpretability.
Bayesian Neural Networks (BNNs) have been applied successfully in medical diagnostics, autonomous systems
and reinforcement learning where the uncertainty quantification is crucial and many other applications
(Blundell et al., 2015). Hyperparameter tuning has also been improved through advances in Bayesian
optimization especially as it applies to deep learning, very efficient search strategies for deep learning model
architectures can be carried out (Snoek et al., 2012). An important advancement is also the creation of
probabilistic programming languages (PPLs) like Stan, PyMC3, Edward and TensorFlow Probability which
bring the democratization of Bayesian modeling bringing user friendly frameworks for building and inference
of complex probabilistic model (Blei et al., 2017). As has happened with the tools, Bayesian adoption has been
accelerated through these tools in finance, epidemiology, and the social sciences, and hierarchical Bayesian
models are now routinely applied in risk modeling, disease forecasting, and policy evaluation (Vehtari et al.,
2021).
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In addition to that, there is a trend to use Bayesian nonparametric models that have flexible and data driven
structures with no assumptions of fixed numbers of parameters. DPMMs and GPs have been widely used in
clustering, regression and spatiotemporal modelling and have been used in many applications, including
genomics, natural language processing and image analysis (Rasmussen & Williams, 2006). Looking forward,
future research will complement Bayesian modeling with faster ways of implementing it, scalability,
interpretability, and making it real-time to bridge the gap between the use of Bayesian method and deep
learning while extending the use of Bayesian method in scientific discovery, Al safety, Probabilistic decision
making. It is interesting that the integration with modern computational advances and Bayesian principles is
paving the way for increasing the influence of probabilistic models in next generation models not only for
probabilistic modeling but also for problems much beyond that.

5.4 Analyzing Social Network Structures Using Discrete Models

Since the analysis of social network structures is an important area of research in computational social science,
economics, epidemiology and artificial intelligence, we use a set of tools from complex networks and graph
theory to analyze the event and actors. Since social networks are composed of discrete entities (nodes) and
relations (edges), we have discrete probability and statistical models that form the important foundations for
studying topological properties, community structures, and a spread of influence as well as dynamical evolution
in social network (Easley & Kleinberg, 2010). As large scale digital networks like social media platforms,
citation networks and online communities have grown, so has the need to extract insights from the complex
relational data, and this is has been done by means of efficient and scalable discrete probabilistic models. For
instance, the fundamental approaches in network analysis are graph based discrete models, namely, the
discrete random graph model, often used is the Erd6s—Rényi (ER) model and the Barabasi—Albert (BA)
preferential attachment model (Newman, 2018). In completing this thesis, the ER model was used as a simple
yet effective framework to consider degree distributions, clustering coefficients and path lengths in social
networks based on the assumption that edges between nodes occur independently with a fixed probability. Real
world social networks, however, do not follow this, as their degree distributions are heavy tailed whereby few
nodes (influencers) have many more connections than the rest. This is addressed with the BA model that
incorporates preferential attachment, where new nodes are drawn to be more likely to connect to already well
connected nodes and captures the scale free properties on Twitter and LinkedIn (Barabasi, 2016).

MRFs and ERGMs constitute more flexible models of network dependencies and structural motifs from
discrete probabilistic models, while extending the categorical domain. ERGMs generalize classical random
graph models as one can define the probability of an edge as a function of network structural properties (such
as reciprocity, transitivity, and homophily) (Robins et al., 2007). Such models have been applied frequently in
studying friendship networks, online interactions and organizational structures where the relationships are not
created freely, but subject to social dynamics. Stochastic block models (SBMs) is another powerful framework
to analyze social networks which can define a discrete probabilistic method to cluster the nodes into latent
groups based on their connectivity patterns (Abbe, 2017). They have been extensively used in political network
analysis, fraud and recommender systems where structures hidden within networks need to be identified.
Degree corrected SBMs and hierarchical SBMs extend the modeling accuracy for heterogeneous and multi
layered networks (Peixoto 2020). Information diffusion and influence propagation modeling in networks
involve also the use of discrete probabilistic techniques. The Independent Cascade (IC) model and the Linear
Threshold (LT) model are two models for discrete probability to simulate information, rumors, or innovations
spreading over the network (Kempe et al., 2003). Analysis of diffusion dynamics using these models is
important and these models are widely used in viral marketing, social contagion studies and epidemiological
modeling.

In recent times, as increased amounts of network data become available, there has been a growing effort
towards combining Bayesian inference, machine learning, and deep generative models into discrete social
network analysis. GNNs have achieved remarkable success in various graph related problems (such as link
prediction, anomaly detection, and social recommendation systems) (Zhou et al., 2020). Advanced research of
this domain will not stop yet and to solve incomprehensible complex social system problems, there will be a
need for integration of classical discrete models with modern computational techniques.

Figure 2- Advancements in Discrete Probability and Bayesian Methods in AI and Data Science

Development Description Impact Fields of Application
Discrete Probability Discrete probability enables = Improved speech Natural Language
in Machine Learning probabilistic classification, recognition, text Processing (NLP), Speech
and NLP sequence modeling, and generation, and structured = Recognition, Al-driven
uncertainty estimation in AI = decision-making in Chatbots, Sentiment
and NLP. Methods include uncertain environments. Analysis

Naive Bayes classifiers,
Bayesian networks, and

Hidden Markov Models

(HMMs).
Methods for Handling Techniques such as Enhanced computational Big Data Analytics,
Large-Scale Discrete probabilistic graphical efficiency in processing Computational Biology,

Data models, variational
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inference, tensor high-dimensional discrete = Social Network Analysis,
decomposition, and datasets. NLP

distributed computing

frameworks improve

scalability.
Growth of Bayesian Advances in Bayesian More robust probabilistic Machine Learning,
Modeling Techniques  inference methods, models for uncertainty Healthcare Diagnostics,
including Hamiltonian quantification, risk Financial Risk
Monte Carlo (HMC), analysis, and scientific Management, Al Safety
Stochastic Variational discovery.

Inference (SVI), and
Bayesian Deep Learning.

Analyzing Social Use of graph-based Better insights into Social Media Analytics,

Network Structures probabilistic models, such as = community detection, Political Science,

Using Discrete Models Exponential Random Graph | influence propagation, and | Cybersecurity, Behavioral
Models (ERGMs) and fraud detection. Economics

Stochastic Block Models
(SBMs), for network
analysis.

6 Applications of Discrete Probability and Statistics

6.1 Finance & Risk Analysis: Discrete-time models in quantitative finance.

Quantitative finance and risk analysis are usually full of uncertainty, where financial systems have some certain
properties with inherent uncertainty are considered, and the robust probabilistic framework is needed for
decision making, hence, discrete probability and statistical models play a key role in these application areas.
The discrete time models are used in many financial processes as stock price movements, credit risk assessment
and portfolio optimization that provide structure of the risk estimation, derivative pricing and asset
management (Shreve, 2004). Discrete time models have evolved a great deal over the years, becoming
increasingly able to predict and more efficient in terms of risk management strategies. The most used discrete-
time model in finance is the Binomial Asset Pricing Model, as introduced by Cox, Ross and Rubinstein (1979).
This is a discrete time stochastic process model in which the price of asset changes with a given probability to
go up by a constant amount or down by the same amount in any one step. In the Black-Scholes framework,
option pricing proceeds from the binomial model, and is necessary for pricing American options, since early
exercise is possible (Hull, 2017). The binomial model is extended to trinomial trees and lattice based methods
that provide better approximations for derivative pricing. The second key application is in credit risk modelling,
where Markov chains and Hidden Markov Models (HMMs) are applied for the study of the credit rating
transitions, default probability of loans, and the corporate bankruptcy risk (Jarrow & Turnbull, 1995). Markov
models that take discrete creditworthiness states estimate the likeliness of borrowers residing in different
creditworthiness categories and are useful at banks and financial institutions in managing loan portfolios and
in the assessment of systemic risk.

Algorithmic trading and high frequency finance are discrete time models where stochastic processes such as
Poisson processes and jump diffusion models are used to describe price movements which are not regular (Cont
& Tankov, 2004). In particular, discrete event simulations are used in these applications to optimize trade
execution strategies as well as minimize the slippage costs incurred by limit order book dynamics and market
microstructure modeling. Discrete probability has a central role in portfolio optimization and risk
management, where one estimates Value at Risk (VaR), and Expected Shortfall (ES) which are standard risk
measures of market risk. Robust tools for stress testing portfolios under extreme market conditions
(Glasserman et al., 2002) belong to discrete statistical techniques such as Monte Carlo simulations and
bootstrapping methods. Finally, discrete Bayesian models are used for adaptive portfolio management, in
which the asset returns are updated continuously based on observed data from the prior beliefs over asset
returns (Black & Litterman, 1992). On the one hand, there has been recent progress in machine learning and
Al in general, as well as in Al investment in finance in particular, and this further expanded the use of discrete
probability models. Nowadays, reinforcement learning algorithms are extensively used in the algorithmic
trading and hedging strategies and in the robo-advisors (Fischer, 2018). In addition, discrete probabilistic
graphical models, such as Bayesian networks and hidden Markov models have been utilised more and more for
fraud detection, anomaly detection in financial transactions, stress testing of banking systems (Bolton & Hand,
2002). With growing financial markets becoming more and more complex as well as data driven, discrete time
models will still have a key role to play in risk assessment, trading strategies and financial decisions. By
integrating statistical learning techniques, Bayesian inference, and probabilistic deep learning, predictive
modeling can be further improved and financial stability in such uncertain environment is foreseen to be more
integrated.

6.2 Discrete Models in Genetic Sequencing and Evolutionary Biology

For genetic sequencing and evolutionary biology, the discrete probability and statistical models that have
developed have become indispensable (and frankly, indispensable) tools for rigorous mathematical framework
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to understand DNA sequences, genetic variation and evolutionary process. As biological sequences (DNA, RNA
and proteins) must be discrete in nature, discrete probability distributions and stochastic processes have been
used by researchers in order to infer evolutionary relationships, detect mutations and construct phylogenetic
trees (Felsenstein, 2004). Feeling of efficiency of discrete models for large scale genetic data comes from rapid
advancements in high through put sequencing technologies and computational biology.

The Markov Chain Model is one of the most fundamental discrete models in genetics, and has been applied to
many nucleotide transition and transversion problems in DNA sequences. The Jukes-Cantor (JC69) model
assumes equal mutation probabilities among all four nucleotides and the Kimura Two Parameter model also
includes different rate of transitions (purine-to-purine or pyrimidine-to-pyrimidine) and transversions
(purine-to-pyrimidine or vice versa) (Kimura, 1980). To complete phylogenetic inference, more complex
models like the General Time Reversible (GTR) model accommodate variable mutation rates for all pairs of the
nucleotides (Yang, 1994). Similarly, Hidden Markov Models (HMMs) have also transformed the gene
prediction and sequence alignment problem into a problem of hidden biological states, in this case exon-intron
boundaries in DNA sequences (Durbin et al., 1998). Probabilistic gene annotation using HMMs is used, for
example, to determine protein coding genes in newly sequenced genomes and to detect regulatory motifs in
those regions of non-coding DNA. GENSCAN and HMMER are widely used in genomics and proteomics, and
these models have been applied successfully in these tools (Eddy, 2011). Discrete coalescent models are used
in evolutionary biology to gain understanding of population genetics and inference of ancestors. The Kingman
Coalescent Model provides a stochastic model of genealogical trees so that researchers can estimate the
population size history, detect evolution of migration patterns and infer genetic bottlenecks (Wakeley, 2009).
This framework is extended by the Structured Coalescent Model in order to include spatial and demographic
structure, and is hence crucial for understanding pathogen evolution and species divergence (Hein et al., 2005).
Bayesian phylogenetics has also become by far the most commonly used method of evolutionary history
reconstruction with discrete models. In addition, Bayesian Markov Chain Monte Carlo (MCMC) sampling with
software like BEAST or MrBayes allows probabilistic inference of phylogenetic trees based on integrating over
uncertainty in model parameter (Drummond & Rambaut, 2007). These Bayesian frameworks are instrumental
to analyzing viral evolution (e.g., COVID-19 phyletics) and epidemiological spread, as well as species
diversification. Discrete models are also another critical application in which discrete probability distributions
are used in genome wide association studies (GWAS) where genetic variants are identified that are associated
with diseases. Discrete logistic regression models are used to ascertain the likelihood of a certain genetic marker
being connected to a disease phenotype (Visscher et al., 2017). Poisson models and negative binomial
distributions are also usually used to model count data and detect differential gene expression between
conditions in RNA sequencing (RNA-Seq) data (Love et al., 2014). With advancements in genetic sequencing
technologies, discrete probabilistic models will have more and more important roles in personalized medicine,
evolutionary genetics, as well as synthetic biology. Deep learning will most likely be used in the future to
combine discrete evolutionary models to underpin more precise genetic predictions, evolutionary
reconstruction, with large scale genomic datasets easily..

6.3 Applications of Discrete Probability in Encryption and Security

Encrypted, cybersecurity, and cryptographic protocol utilize discrete probability that serves as mathematical
foundation for randomness, unpredictability, and secure key generation. Since most cryptographic systems
takes discrete structure (finite fields, modular arithmetic, ...), probabilistic techniques are important to provide
secure communication channels, detect anomalies, and analyze threats (Goldreich, 2004). The expanded role
of discrete probability in modern cybersecurity is due to recent advancements in post-quantum cryptography,
probabilistic encryption, and stochastic security models.

Discrete probability is one of the main applications in the context of cryptography for RNG, i.e. for key
generation, encryption, and digital signatures, since random numbers are needed in all these tasks. Pseudo
random number generators (PRNG) and the true random number generators (TRNG) are used in
cryptographic systems depending on unpredictability (Menezes et al., 2018). Discrete probabilistic models like
Markov chains and entropy based randomness extraction are used in many PRNGs to produce sequences that
look like random but through these PRNGs, the sequences are computationally efficient. Discrete probability
distributions are used to model TRNGs (meaning a TRNG generates randomness from physical, i.e. thermal
noise or quantum, fluctuations) which guarantees high-security encryption keys. Probabilistic encryption
schemes also employ discrete probability in that they add randomness to encrypt a message so that it is not
vulnerable to attack. One of the earliest discrete probability models was Goldwasser and Micali’s (1982)
probabilistic encryption model which supports the notion of discrete probability by ensuring that each plaintext
has multiple possible ciphertexts unless using the secret key. Discrete Gaussian distributions are nowadays
employed in modern encryption techniques, including homomorphic encryption and lattice based
cryptography (Lyubashevsky et al., 2013), while providing the ability of secure computations of encrypted data.
In public key cryptography, for instance, the Discrete Logarithm Problem (DLP) or the Integer Factorisation
Problem (IFP) which are ‘hard’ mathematical problems under discrete probability form the basis of the security
upon which algorithms such as RSA, Diffie-Hellman key exchange, and Elliptic Curve Cryptography (ECC)
(Rivest et al., 1978) are built upon. Solving these problems in the polynomial time is hard as it is dependent on
the probabilistic infeasibility of decrypting if we do not have the private key. Recently, discrete noise
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distributions have been utilized to protect against quantum attacks by recent advancement on the quantum
resistant cryptographic algorithms such as Learning With Errors (LWE) and Ring-LWE (Peikert, 2016).
Indeed, discrete probability would also be crucial in intrusion detection systems (IDS) and anomaly detection
in cybersecurity. Only recent machine learning based security systems relies on probabilistic models, such as
Hidden Markov Models (HMMs) and Bayesian networks and Poisson distribution are used for detecting
irregular login patterns, network anomalies and fraud detection (Denning, 1987), etc. These models allow to
make estimates as to how likely it is that security breaches will occur by comparing observed behaviors with
predicted probabilistic distributions. Discrete probability is applied in steganography and digital watermarking
to embed secret message in images, audio, and video thereby minimizing detection (Petitcolas et al., 1999).
Information embedding is modeled probabilistically to find the best locations while being resistant to statistical
analysis attacks. It is precisely in the area of cryptographic security, intrusion detection and privacy preserving
protocols that discrete probability is still at the core of cyber threats, which are becoming increasingly
sophisticated. In future its role in securing digital communication will grow as development advances post-
quantum cryptography, zero knowledge proofs, and probabilistic blockchain consensus mechanisms.

6.4 Discrete Statistical Methods in Disease Modeling and Pandemic Predictions

However, there are cross subsections within this domain that employ discrete statistical methods which are
crucial in epidemiology, disease modelling, and forecasting pandemics among other things, to understand
infection dynamics, progression of an outbreak, as well as the effect of public health interventions. To quantify
uncertainty, estimate risks, and optimise containment strategies, we apply discrete probability models
appearing from the fact that disease transmission are often discrete events (e.g., individual infections,
recoveries and hospitalization) (Anderson & May, 2020).

The Susceptible-Infectious-Recovered (SIR) model is one of the most used model in epidemic forecasting that
discretizes the population into three compartments, the susceptible (S) individuals, the infectious (I)
individuals, and the recovered (R) individuals (Kermack & McKendrick, 1927). Additional extensions of this
model like the Susceptible-Exposed-Infectious-Recovered (SEIR) model incorporate a latent period in order to
predict diseases, like COVID-19 or influenza (He et al., 2020). Discrete differential equations and Markov
chains are used by these models to simulate the spread of infections over time and calculate the effectivness of
implements of intervention (vaccinatiation, social distancing, quarantine), amongst others. Pandemic risk
assessment also widely coincides with discrete stochastic model application in the modeling of rare and
uncertain outbreak events. This type of early forecast has been made in zoonotic spillover modeling or early
outbreak detection (Lloyd Smith et al., 2005), by employing branching processes to assess the possibility of the
disease extinction or explosion. Also, Poisson and negative binomial models are adopted for situations whereby
the case distributions are overdispersed, such as super spreader events that are crucial in pandemics like Ebola,
SARS and COVID 19 (Blumberg & Lloyd Smith, 2013).

Discrete statistical methods are another important application, these being in Bayesian disease models where
hierarchical Bayesian models are used to estimate infection rates, mortality risks and the impacts of
interventions (Gelman et al., 2013). Real time phylogenetic analysis of viral genomes is possible with the
Bayesian Markov Chain Monte Carlo (MCMC) techniques such as BEAST and Stan that allows for tracing of
mutation pattern, transmission clusters and evolutionary origins of pandemics (Drummond & Rambaut,
2007). Hospital resource planning and patient prognosis use discrete time Markov models for predicting ICU
occupancy rates, hospitalization duration and ventilator demand when there are outbreaks (Wu et al 2020).
These models empower health care policymakers to make data grounded decisions regarding strategic
investment in resource allocations, in a manner that guarantees maximum efficiency of the critical care
infrastructure during crises.

Finally, agent based models (ABMs) have come to be widely used in pandemic simulation, wherein individual
agents (people) interact in a stochastic environment (Ferguson et al. (2006)). Plugins such as these models
capture heterogenous behaviours, mobility patterns, and policy effects, and are very good at evaluating the
effect of non pharmaceutical interventions including masks mandates, lockdowns, and lockdowns. Syndromic
surveillance and outbreak detection later require discrete probabilistic techniques as well, where working with
real-time case reports, genomic sequences, mobility data, and a growing corp of digital footprints, hidden
Markov models (HMM) and Bayesian networks use best practices of tracking inference to identify emerging
threats (Reich et al., 2016). Further improvements were added to early warning systems employing machine
learning enhanced discrete models using Twitter feeds, search engine queries as well as wearable health sensors
to alert of unusual disease patterns before clinical diagnosis is made to an outbreak (Kass-Hout & Alhinnawi,
2013). Discrete statistical methods will help the public health interventions, optimize vaccine distribution and
mitigate the global health crises as disease surveillance systems keep becoming more and more data driven and
computationally intensive. Future developments in Bayesian inference, network based epidemiology and Al
driven disease modeling will increase predictive accuracy, improving pandemic preparedness and response
strategies worldwide.
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Figure 3- Applications of Discrete Probability in Finance, Biology, Security, and Healthcare
Application Description Impact Fields of Application
Finance & Risk Discrete probabilistic models, Enhanced option Investment Banking,
Analysis: Discrete- such as binomial asset pricing, credit risk Algorithmic Trading,
Time Models in pricing, Markov chains, and analysis, and portfolio Risk Management,
Quantitative Monte Carlo simulations, optimization for better Insurance
Finance improve financial risk financial decision-making.
assessment.
Discrete Models in Markov models, Hidden Improved gene Genomics,
Genetic Sequencing  Markov Models (HMMs), and = prediction, mutation Bioinformatics,
and Evolutionary Bayesian phylogenetics are detection, and Evolutionary Biology,

Biology
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reconstruction for better
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Personalized Medicine

variation.
Applications of Probabilistic encryption, Strengthened Cryptography,
Discrete Probability = random number generation, cybersecurity through Cybersecurity,
in Encryption and and post-quantum secure encryption Blockchain, Digital
Security cryptography secure digital protocols, fraud Forensics

Discrete Statistical
Methods in Disease

communication.

SIR/SEIR models, Bayesian
epidemiological models, and

detection, and
blockchain security.
More accurate pandemic
forecasting, healthcare

Epidemiology, Public
Health, Disease

Modeling and agent-based simulations resource allocation, Surveillance,
Pandemic predict disease spread and and outbreak detection. = Biostatistics
Predictions intervention effects.

7 Challenges and Open Research Problems in Discrete Probability and Statistics

Although there have been great leaps forward in discrete probability and statistics, there are still issues,
determinations in scalability, lack of data, hybrid modeling, and ethics. It is very important to address these
challenges in order to increase the model accuracy, computational efficiency, and real world applicability in
these other fields such as Al finance, cryptography, and epidemiology. In particular, most discrete probabilistic
models, including Hidden Markov Models, Bayesian Networks, and many other statistcal models based on
Markov Chain Monte Carlo (MCMC) methods are computationally intractable, and become combinatorially
intractable when they are applied to large-scale databases (or more precisely, large databases with massive
search spaces). In many cases, exact inference is NP hard in the state space explosion, as the number of discrete
states increases (Koller & Friedman, 2009). VI and parallelized sampling have better scalability, but usually
come at the cost of introducing APPEX (Blei et al., 2017). Future research must be dedicated to developing
scalable algorithms that do not compromise tradeoff between efficiency and accuracy, especially for the real
time decision making in the area of cybersecurity, finance, as well as to autonomous systems.

Such rich structured datasets are required for many discrete probabilistic models, but often hard to collect due
to privacy concerns, small sample sizes, highly biased sampling, etc. (Vehtari et al., 2021). This is a very
challenging problem in epidemiology, finance risk analysis, and social network modeling as real world datasets
are generally incomplete, noisy, or very lacking labels. It is a large challenge to ensure that discrete models
generalize well across multiple different datasets and do not overfit to particular areas. The mitigation of this
issue can come from few shot learning, transfer learning and synthetic data generation techniques which yet
need some more efforts. Such systems are many real world systems, which possess both discrete and
continuous characteristics, and hence hybrid probabilistic models, as a combination of discrete probability
distributions and continuous stochastic processes, are necessary. Specifically, the combination of Poisson
processes (discrete jumps) with Brownian motion (continuous fluctuations) allows for modeling of market
volatility (Cont & Tankov, 2004, p. 3) using discrete jump-diffusion models. Like with hybrid epidemiological
models that join discrete agent based simulations with continuous differential equations, hybrid
epidemiological models that combine discrete agent based simulation with differential equations are used to
improve forecast of a pandemic (Ferguson et al., 2006). Despite this, there is yet an open problem to construct
efficient hybrid models that remain tractable while retaining interpretability.

Predominant with the use of probabilistic Al models in the criminal justice system, hiring, diagnosis of medical
issues, or finance are issues with fairness, transparency, as well as bias (O’Neil, 2016). While such discrete
probabilistic classifiers as Bayesian networks and decision trees may not unwittingly effect discriminate, they
may reproduce the biases in the training data. Explicit examples include the use of discrete probability
distributions in predictive policing models that can reinforce what has been shown to reinforce racial and
socioeconomic biases in law enforcement decisions (Benjamin, 2019). Also, risk communication to patients
and policymakers in particular is difficult sometimes due to uncertainty quantification in medical diagnostics.
The future research would be on explainable AI (XAI), fairness aware probabilistic models, and robust decision
making frameworks to deploy the ethical AI.
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8 Discussion

Since the theory of discrete probability and statistical methods has evolved so rapidly, it has completely
transformed many fields such as machine learning, finance, epidemiology, cryptography, the social network
analysis, to name a few. This review has presented some major advances mainly in Bayesian modelling, non
classical distributions, graph based network models and probabilistic security frameworks. Although these
improvements were made, there are still many open questions and challenges — namely on the scaleability,
computational complexity, hybrid modelling, and regarding the ethical aspects. The purpose of this section is
to discuss how recent developments affect research in the discrete probability and statistics, explore what is
limited up to now, and what can be done in the future.

By integrating probabilistic graphical models, stochastic processes, and deep learning techniques, discrete
probability models can now be applied to problems of large scale and real world. For sequence modeling tasks
such as speech recognition and text generation driven by the machine learning and natural language processing
(NLP), adding deep neural networks to a combination of the Hidden Markov Models (HMM) has produced
great improvements (Jurafsky & Martin, 2021). In both finance and risk analysis, the same has occurred toward
the refinement of discrete-time asset pricing models that have yielded sharper volatility predictions and better
portfolio optimization strategies (Cont & Tankov, 2004).

Whether or not in epidemiology and disease modeling (e.g., Poisson based outbreak detection and Bayesian
epidemiological models) improved pandemic forecasting and intervention planning (Ferguson et al. 2006). In
addition, the construction of the post quantum cryptographic schemes on the discrete probability distribution
has led to improved security of data in cryptography and cybersecurity against the threat of quantum
computing (Lyubashevsky et al., 2013). These advances point to the fact that starting in modern computational
and sci But it has been made despite the fact that several critical challenges hold back widespread adoption and
effectiveness of discrete probability methods. As we scale and in general, computational complexity becomes
one of the major issues. On the other hand, Markov Chain Monte Carlo (MCMC) methods and Bayesian
networks are many probabilistic models that show exponential increase in computation time with growing
dataset size (Blei et al., 2017). Better scalability in VI and parallel computing has also been achieved at the
expense of accuracy. Future research must speed approximative inference techniques that do not require so
much computations and retain a high accuracy.

An additional pressing problem is data availability as well as model generalization. The problem addressed by
these discrete statistical methods is that many of them rely on well-structured, high quality datasets that are
often missing, biased, or only available because of such potential privacy risks (Vehtari et al., 2021). In
particular, this is a problem that is common to medical data, financial transactions, and cybersecurity logs,
where access to labeled data is available but limited, making a difference on the performance of the models.
However, transfer learning, few-shot learning and synthetic data generation can potentially aid but effectively
solving the problem is an open research question. In addition, hybrid probabilistic models of this type are
needed to integrate discrete and continuous parts. Examples of such phenomena representative of these dual
discrete transitions and continuous fluctuations are financial markets, epidemiological spread, and climate
modeling. Albeit this gap is not filled statically with simple hybrid models such as jump-diffusion models in
finance or agent based models in epidemiology that still continue to require manual fine tuning and domain
specific expertise (Cont & Tankov, 2004). Next the future research should be about developing the automated
hybrid modeling techniques flexibly making discrete and continuous representations on that basis of the data
patterns.

The ethical concern that fairness, transparency and bias concern are held serious by the significant use of
Probabilistic AT models in criminal justice, finance and healthcare. Although discrete probabilistic models such
as Bayesian classifiers and Markov decision processes seek to be well calibrated against the truth, they may
unknowingly perpetuate the biases that are in the training data and yield discriminatory outcomes (O’Neil,
2016). As an example, predictive policing models can overpolicing of marginalized communities by predicting
crime risk probabilistically, which enforces historical inequities (Benjamin, 2019). Likewise, in automated
financial lending systems there are probabilistic models assessing loan default risks that may unintentionally
discriminate some demographics thereby resulting in algorithmic bias in credit scoring. Future research should
target bias corrected algorithms, fairness aware probabilistic models ensuring that will make decision that will
be fair to any of the parties involved while being accurate about information at hand, and the explainable
artificial intelligence (XAI) techniques.

9 Conclusion

Modern data driven decision making is still in your fingertips and it continues to be applications in Al, finance,
epidemiology, cryptography and security. Nevertheless, issues of scalability, data constraints, hybrid modeling,
and ethical deployment of AI have to be addressed to bring them to fruition. The future research should work
on the computational efficiency, model fairness, and integration of hybrid probabilistic framework for the
creation of robust, responsible and reliable AI system. Solving these problems will ensure that discrete
probability and statistics will continue to be the cornerstone of scientific discovery, technological innovation
for years to come.
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10 Future scope of the study

In order for discrete probability and statistics to be preserved in their future, scalable improvements along with
hybrid modeling, ethical AI and quantum resistant security, and interdisciplinary applications should be
emphasized. To cope with big scale datasets, the computational bottlenecks in Markov Chain Monte Carlo
(MCMC) methods as well as probabilistic graphical models can be addressed by approximate inference
techniques, deep probabilistic programming and parallel computing. Such applications are handled
particularly requiring adaptive hybrid frameworks that build on the integration of the discrete and continuous
models. Fairness aware Bayesian models, explainable artificial intelligence (XAI) and uncertainty
quantification are needed in probabilistic AT and decision-making because of their ethical concerns in the fields
of healthcare, finance and criminal justice. There is a need for progress in post quantum cryptography, lattice
based encryption, and quantum inspired probabilistic inference to secure data security that rises from the need
for quantum computing. At the same time, Bayesian phylogenetics, probabilistic causal discovery, and the
network based stochastic modeling will revolutionalize probabilistic quantitative biology in general, and
biostatistics, genomics, computational neuroscience, in particular. Since machine learning and discrete
statistical methods merge, future research will put emphasis on the automated probabilistic reasoning, the real
time decision making and the intelligent AI powered statistical models that will bring robust, interpretable,
efficient probabilistic systems in all disciplines.
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