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ARTICLE INFO ABSTRACT 
 This study presents a novel methodology for the identification of Autism 

Spectrum Disorder (ASD) in toddlers by integrating Particle Swarm Optimization 
(PSO) and Ant Colony Optimization (ACO) algorithms. The objective is to 
enhance the accuracy and reliability of ASD diagnosis through a hybrid 
computational model. Each toddler’s symptoms were quantified and processed 
using ACO to identify potential ASD cases, followed by PSO to optimize the 
classification based on symptom severity.  
The model’s performance was assessed using a random forest classifier which 
demonstrated an accuracy range between 94% and 98%, indicating a significant 
improvement over traditional diagnostic methods.  
In conclusion, this hybrid model offers a promising tool for early ASD detection, 
with the potential to facilitate timely intervention and support for affected 
children. The findings underscore the efficacy of combining nature-inspired 
algorithms in medical diagnosis, paving the way for further research and 
application in clinical settings. 
 
Keywords: Autism Spectrum Disorder, Particle Swarm Optimization, Ant 
Colony Optimization, Hybrid Computational Model, Random Forest 

 
1.  INTRODUCTION 

       
Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition distinguished by challenges 
in social interaction, communication, and the presence of repetitive behaviours. Early diagnosis and 
intervention are crucial for improving outcomes for children with ASD, but traditional diagnostic methods can 
be time-intensive and prone to human error. Consequently, there is a growing interest in developing automated 
and accurate diagnostic tools leveraging computational techniques. 
Machine Learning as well as optimization algorithms have shown promise in various medical diagnostic 
applications, including ASD detection. Among these techniques, Particle Swarm Optimization (PSO) and Ant 
Colony Optimization (ACO) have gained attention due to their ability to effectively search and optimize large 
solutions spaces. PSO emulates the collective behaviour exhibited by birds in a flock or fish in a school to 
identify optimal solutions, whereas ACO replicates the foraging actions of ants to locate the most efficient 
routes to resources. 
      
This study aims to improve the accuracy and reliability of ASD diagnosis through the integration of PSO and 
ACO algorithms into a hybrid computational model. The proposed approach utilizes a validated dataset 
comprising various symptoms and demographic factors related to ASD. The dataset is divided into training and 
testing subsets for comprehensive evaluation of the model's performance. 
      
In the proposed method, ACO is employed to identify potential ASD cases by analysing the symptom data and 
determining the most relevant features. Subsequently, PSO is applied to optimize the classification process 
based on the severity of the symptoms. The hybrid model's performance is evaluated with a Random Forest 
(RF) classifier, using metrics like accuracy, precision, recall, and F1 score for effective assessment. 
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The results indicate that the integration of ACO and PSO significantly improves diagnostic accuracy, achieving 
a range between 94% and 98%. This represents a notable advancement over traditional diagnostic methods 
and highlights the potential of hybrid nature-inspired algorithms for early detection of ASD. By leveraging the 
strengths of both ACO and PSO, the proposed model offers a comprehensive framework for analysing and 
diagnosing ASD symptoms, providing a promising tool for early intervention and support for affected children. 
 
1.1 RESEARCH OBJECTIVE 
This research aims to develop and validate a hybrid artificial intelligence (AI) model that integrates ACO and 
PSO algorithms, enhanced with a RF classifier, to improve the accuracy of early ASD detection in toddlers. This 
objective addresses several critical areas: 

 Enhancing Diagnostic Accuracy: The primary goal is to significantly improve the diagnostic accuracy 
for early ASD detection. By integrating ACO and PSO, the hybrid model aims to leverage the strengths of both 
optimization techniques to enhance feature selection and parameters tuning processes, which are crucial for 
the performance of the classification model. 

 Optimizing Feature Selection: ACO is particularly effective in discrete optimization and can identify 
the most pertinent features from the dataset that contribute to accurate ASD detection. By selecting the most 
significant features, the model can reduce noise and improve the classification performance. 
 Efficient Parameter Tuning: PSO excels in continuous optimization and can be employed to fine-tune 
the parameters of the Random Forest classifier, ensuring that the model is not only accurate but also efficient. 
This helps in achieving a balance between the complexity of the model and its performance. 
 Validation and Benchmarking: The research aims to rigorously validate the hybrid model using real-
world ASD datasets. This involves comparing the hybrid model’s performance against standalone ACO, PSO 
and traditional machine learning models. 
 

2.  BACKGROUND STUDY 
 

Recent advancements in the application of nature-inspired algorithms to medical diagnostics, particularly for 
neurological disorders, have shown significant promise. As there is no such direct involvement of ACO and PSO 
in ASD detection for toddlers, the following passages delve into the specific roles and outcomes of ACO and 
PSO in medical disease optimizations.  
      
Dorigo and Stützle [1] emphasized the versatility of ACO in tackling intricate optimization problems, especially 
in the realm of high-dimensional medical datasets. ACO imitates the foraging patterns of ants by employing 
pheromone trails to find optimal solutions, though its computational cost continues to pose a challenge. 
Khourdifi and Bahaj [2] implemented ACO alongside for predicting heart disease, achieving an impressive 
classification accuracy of 99.65% using the Fast Correlation-Based Feature Selection (FCBF) technique. 
Despite the success in enhancing predictive models, the complexity of the hybrid system was identified as a 
drawback. Ganji and Abadeh [3] integrated ACO into a fuzzy classification system for diagnosing diabetes, 
demonstrating its efficacy in selecting features for high-dimensional data. While its enhanced classification 
results by pinpointing relevant features, the computational burden in handling large datasets was a notable 
issue. Meenachi and Ramakrishnan [4] utilized ACO in combination with fuzzy rough set feature selection and 
differential evolution algorithms for cancer prediction using microarray gene expression data. While the use of 
dual feature selection techniques led to improved accuracy, it also resulted in increased time complexity as a 
notable drawback. Amit and others [5] introduced an ACO_NB (Naive Bayes)-based hybrid model for medical 
disease diagnosis, highlighting the need for advanced techniques in this field. Despite its effectiveness, the 
computational cost associated with pre-processing and model training presented challenges. Jiang and others 
[6] developed a modified backpropagation neural network integrated with ACO for assessing chronic liver 
disease. The model demonstrated acceptable accuracy and precision, but further testing on larger datasets is 
necessary to assess scalability.  
       
A swarm-based symmetrical uncertainty feature selection method has been proposed by Abitha and Vennila 
[7] to enhance the accuracy of ASD diagnosis by optimizing the selection of features, demonstrating improved 
performance in diagnostic models. Complementing this, the optimization of neural networks using Particle 
Swarm Optimization (PSO) with varying inertia weights has been shown by Jayakumaran and Sweetlin [8] to 
further improve ASD detection accuracy, highlighting the critical role of parameter tuning in such models. Lan 
and others [9] utilized a combination of PSO and Convolutional Neural Networks (PSO-CNN) to enhance ASD 
detection. This model was applied to datasets including toddlers, achieving a high accuracy rate of 99.1% by 
optimizing feature selection and classification processes. An analysis done by Shafiq and others [10] of nature-
inspired algorithms in the context of Parkinson's Disease suggests that insights from one neurological disorder 
can inform approaches to others, underlining the adaptability and potential cross-condition utility of these 
algorithms. These findings collectively underscore the growing importance of swarm intelligence and other 
nature-inspired algorithms in medical diagnostics, while also pointing to the need for continued research into 
optimizing these techniques for specific disorders and comparing their effectiveness across different 
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applications. The systematic review of PSO and its applications done by Gad [11] highlights PSO's versatility 
and effectiveness in various domains, particularly in optimizing non-linear and complex problems. Dulhare 
[12] demonstrated how PSO can improve predictive accuracy while cutting down on computation time by using 
a data mining technique for feature selection in heart disease prediction. This illustrated the usefulness of PSO 
in enhancing disease prediction models for better patient care and therapeutic approaches. PSO was applied 
by Ahilan and others [13] to multilevel thresholding methods for medical image analysis, greatly increasing 
diagnostic efficacy and efficiency. The study demonstrated how PSO can improve image segmentation 
procedures, which are essential for managing and detecting diseases. PSO was used by Prasadl and others [14] 
to improve the accuracy and dependability of asthma diagnosis by optimizing machine learning algorithms. 
This study illustrated how PSO can improve medical diagnostics expert systems and lead to better healthcare 
results. In a systematic review, Pervaiz and others [15] emphasized the value of PSO and other optimization 
methods in the identification of medical diseases. The review noted existing uses and underlined the necessity 
of more research into PSO's potential for process optimization in healthcare. In order to improve CT scan 
results and detect pancreatic tumors, Dhruv and others [16] used PSO for image enhancement. An enhanced 
PSO algorithm was used by Nabat and others [17] to diagnose cancer, allowing for the effective identification 
of cancer types and giving doctors comprehensive information. Shree and colleagues used blended 
biogeography optimization to study leukemia classification, and they were able to use statistical features to 
achieve a 93% accuracy rate. A multi-agent system with PSO was presented by Allioui and others [18] for 
optimal medical image segmentation, enhancing quality and decision-making under medical restrictions. By 
employing textural features from segmented mammography images, Doma and others [19] successfully 
classified microcalcifications using Weighted PSO (WPSO) for the detection of breast cancer. 
     
Selvi and Umarani [20] revealed that ACO and PSO both techniques are effective, their performance varies 
based on specific problem characteristics, indicating the need for careful algorithm selection depending on the 
application. Peng [21] suggested a hybrid optimization technique that combines PSO and Ant Colony System 
(ACS) to improve the optimization procedure for medical disease prediction. This combination capitalized on 
the advantages of both approaches to enhance performance. Jiang and Ma [22] used a hybrid PSO and ACO 
approach to create an optimal homomorphic wavelet fusion method for image fusion. This study demonstrated 
the advantages of fusing conventional image processing methods with swarm intelligence. Mahi and others 
[23] created a hybrid method to optimize classification algorithms for datasets related to heart disease by 
combining ACO and PSO. With a high classification accuracy of 99–65%, the model's performance was greatly 
improved by the incorporation of Fast Correlation-Based Feature Selection (FCBF). The collaboration between 
ACO and PSO in tackling intricate medical classification issues is demonstrated by this study. A hybrid ACO-
PSO model was used by Elhoseny and others [24] to secure medical images in Internet of Things settings. Their 
research showed how flexible hybrid optimization approaches are for both classification tasks and guaranteeing 
data security and integrity in medical applications. The application of a hybrid ACO-PSO approach for 
predicting energy demands in healthcare settings was demonstrated by Kiran and others [25]. This study 
highlights the wider applicability of these algorithms in optimizing resource allocation and healthcare 
management, even though they are not directly related to disease prediction. 
  It is clear from the literature review above that combining ACO and PSO has shown great promise for 
improving feature selection, classification precision, and computational efficiency in medical diagnostics. 
Motivated by these results, we have chosen to use a hybrid ACO-PSO method to predict ASD in toddlers. 
 

3.  METHODOLOGY 
 
ASD detection indeed poses significant challenges due to its complex and heterogeneous nature. Traditional 
diagnostic methods rely heavily on subjective assessments by clinicians, which can be time-consuming and 
may vary in accuracy. In recent years, researchers have explored the potential of various computational 
techniques to aid in ASD detection, including PSO, ACO, and Random Forest (RF). Combining these 
computational techniques, researchers aim to develop robust and accurate ASD detection models that can 
effectively analyse multidimensional data, identify relevant biomarkers or features, and distinguish individuals 
with ASD from neurotypical controls. However, it's essential to acknowledge the inherent challenges in ASD 
detection, including data heterogeneity, sample size limitations, and the need for cross-validation and external 
validation to ensure the generalizability of the models. Additionally, ethical considerations regarding data 
privacy, interpretability, and fairness must be carefully addressed to ensure the responsible deployment of 
computational approaches in ASD diagnosis and research. 
 
3.1 DATA COLLECTION 
The dataset has been collected from various reputed medical professionals and institutions. This dataset 
features ten behavioural traits of Quantitative Checklist for Autism in Toddlers (Q-Chat-10) alongside 
additional individual attributes that have proven exceptionally effective in the detection of ASD of toddlers 
aged 12-36 months. It incorporates diverse data types, such as numerical, and categorical data, systematically 
assembled to facilitate relevant analytical insights. Prior to analysis, stringent pre-processing protocols, 
including data cleaning, normalization, and feature engineering, were employed to optimize data integrity and 
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enhance the validity of subsequent findings. The dataset comprises 4616 instances and 16 attributes. The 
attributes' names, types, and descriptions are detailed in Table.1 and Table.2. Also, Table.3 is showing the 
sample dataset. 

 
3.2 DATA PRE-PROCESSING 
To guarantee the data's cleanliness, consistency, and readiness for analysis, a series of pre-processing steps 
were meticulously carried out. These steps were aimed at enhancing the quality and uniformity of the dataset, 
thereby facilitating more accurate and reliable analyses. Initially, data cleaning procedures were applied to 
identify and rectify any erroneous or missing values, ensuring data integrity. Subsequently, normalization 
techniques were employed to standardize the data distribution and mitigate any potential biases that could 
impact subsequent analyses. Additionally, feature engineering strategies were implemented to extract relevant 
information and optimize the dataset's predictive power. Binary encoding method has been used to convert 
categorical values, such as "sex" into binary values. By methodically executing these pre-processing steps, the 
dataset was primed for comprehensive exploration and meaningful insights extraction. The processed dataset 
is depicted in Table 4. The heatmap visualisation of the is also represented through Fig.1. 
 

 
Fig.1. Heatmap of ASD dataset 

 
Table.1. Attributes of ASD toddlers’ dataset 

Feature Type Description 
Q1 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q2 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q3 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q4 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q5 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q6 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q7 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q8 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q9 Binary (0, 1) Based on Q-CHAT-10 guidelines 
Q10 Binary (0, 1) Based on Q-CHAT-10 guidelines 
total_score Number 1-10  

 Less than or equal 3 means NO ASD  

 > 3 means ASD traits 
sex Character Male or Female 
age Number Toddlers (months) 
jaundice Boolean (yes or no) Whether the case was born with jaundice 
family_member_with_ASD Boolean (yes or no) Whether any immediate family member has a PDD  
ASD String ASD traits or No ASD traits ((Yes / No) 
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Table.2. Details of variables mapping to the Q-Chat-10 screening methods 
Variable Corresponding questions 
Q1 Does your child look at you when you call his/her name? 
Q2 How easy is it for you to get eye contact with your child?  
Q3 Does your child point to indicate that s/he wants something? (e.g. a toy that is out of reach)  
Q4 Does your child point to share interest with you? (e.g. pointing at an interesting sight)  
Q5 Does your child pretend? (e.g. care for dolls, talk on a toy phone)  
Q6 Does your child follow where you’re looking?  
Q7 If you or someone else in the family is visibly upset, does your child show signs of wanting 

to comfort them? (e.g. stroking hair, hugging them) 
Q8: Would you describe your child’s first words as:  
Q9 Does your child use simple gestures? (e.g. wave goodbye)  
Q10 Does your child stare at nothing with no apparent purpose?  

 
Table.3. Details of variables mapping to the Q-Chat-10 screening methods 

index sex age jaundice family_ 
member 
with_ASD 

Q
1 

Q
2 

Q
3 

Q
4 

Q
5 

Q
6 

Q
7 

Q
8 

Q
9 

Q1
0 

Total 
score 

ASD 

0 male 21 yes yes 1 1 1 0 0 1 1 0 0 1 6 yes 
1 male 29 yes yes 1 1 0 1 0 0 1 0 1 1 6 yes 
2 female 20 yes yes 0 1 0 0 0 0 1 0 1 0 3 no 
3 male 31 no no 1 1 0 1 1 1 1 1 0 1 8 yes 
4 female 29 no no 1 0 0 0 0 1 0 1 1 1 5 yes 
5 male 35 yes yes 1 0 1 1 0 0 0 0 0 1 4 yes 
6 female 34 no no 1 0 1 1 0 1 0 0 1 1 6 yes 
7 female 30 yes yes 1 1 0 0 1 0 0 0 1 0 4 yes 
8 male 29 no yes 0 0 0 0 1 0 0 0 1 1 3 no 
9 male 32 yes no 1 1 1 0 1 1 1 1 0 1 8 yes 
10 male 16 no yes 1 1 0 0 0 0 1 0 0 1 4 yes 
11 male 30 yes no 0 1 0 0 0 1 0 0 1 0 3 no 

 
Table.4. Processed ASD dataset of toddlers   

index sex age jaundice family_ 
member_ 
with_ 
ASD 

Q
1 

Q
2 

Q
3 

Q
4 

Q
5 

Q
6 

Q
7 

Q
8 

Q
9 

Q 
10 

total_ 
score 

ASD 

0 male 21 1 1 1 1 1 0 0 1 1 0 0 1 6 yes 
1 male 29 1 1 1 1 0 1 0 0 1 0 1 1 6 yes 
2 female 20 1 1 0 1 0 0 0 0 1 0 1 0 3 no 
3 male 31 0 0 1 1 0 1 1 1 1 1 0 1 8 yes 
4 female 29 0 0 1 0 0 0 0 1 0 1 1 1 5 yes 
5 male 35 1 1 1 0 1 1 0 0 0 0 0 1 4 yes 
6 female 34 0 0 1 0 1 1 0 1 0 0 1 1 6 yes 
7 female 30 1 1 1 1 0 0 1 0 0 0 1 0 4 yes 
8 male 29 0 1 0 0 0 0 1 0 0 0 1 1 3 no 
9 male 32 1 0 1 1 1 0 1 1 1 1 0 1 8 yes 
10 male 16 0 1 1 1 0 0 0 0 1 0 0 1 4 yes 
11 male 30 1 0 0 1 0 0 0 1 0 0 1 0 3 no 

 
3.3 MODEL TRAINING AND EVALUATION 
In this study, we utilized Python's scikit-learn library for implementing the Random Forest classifier and 
evaluating various metrics. NumPy was employed for numerical computations and array operations, while 
Matplotlib was used for visualizations, including confusion matrices and heatmaps. The implementation was 
carried out using popular Python IDEs such as Jupyter Notebook, PyCharm, and Visual Studio Code. All 
experiments were conducted on a personal computer equipped with an AMD Ryzen 5 (7000 series) processor, 
featuring a base speed of 2.80 GHz and an octa-core configuration, along with 16GB of RAM. 
 
3.3.1.  ACO Algorithm 
Ant Colony Optimization (ACO) is a probabilistic technique proposed by Marco Dorigo in the 1990s for solving 
computational problems which can be reduced to finding good paths through graphs. Inspired by the foraging 
behaviour of ants, ACO is a part of swarm intelligence and is used to find optimal solutions to various 
combinatorial optimization problems. The inspiration for ACO comes from the natural behaviour of ant 
colonies, particularly their method of finding the shortest path between food sources and their nest. Ants 
communicate with each other using a chemical substance called pheromone, which they deposit on the ground 
as they move. Here’s a breakdown of how this process works: 
 Pheromone trail laying and following: When ants explore their environment, they lay down 
pheromone trails. Other ants detect these trails and tend to follow them, with a higher probability of following 
stronger (more concentrated) pheromone trails. 
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 Evaporation: Pheromone trails evaporate over time, reducing their attractiveness. This prevents the 
convergence to suboptimal paths and encourages exploration of new paths. 
The pseudocode of the algorithm stated below: 
 

A l g o r i t h m  1 :  Pseudocode of ACO algorithm 
Input: 
problem_data          // Problem-specific data (e.g. our ASD data) 
n_ants                       // Number of ants 
n_iterations             // Maximum number of iterations 
α                                // Pheromone influence parameter 
β                                // Heuristic influence parameter 
ρ                               // Evaporation rate 
𝜏0                              // Initial pheromone value 
 
Output: 
best_solution        // Best solution found 
best_cost               // Cost of the best solution 
 
Begin 
// Initialize pheromone trails 
for each edge (i, j) do 
𝜏𝑖𝑗← 𝜏0  

end for 
best_solution ← null 
best_cost ← ∞ 
 
// Main loop 
for iteration = 1 to n_iterations do 
solutions ← [] 
costs ← [] 
 
// Construct solutions with all ants 
for k = 1 to n_ants do 
solution ← ConstructSolution (τ, η, α, β) 
cost ← CalculateCost (solution) 
 
solutions.append (solution) 
costs.append (cost) 
 
// Update best solution if necessary 
if cost < best_cost then 
best_solution ← solution 
best_cost ← cost 
end if 
end for 
 
// Update pheromone trails 
UpdatePheromone (τ, solutions, costs, ρ) 
 
// Optional: Apply local search 
if UseLocalSearch then 
best_solution ← LocalSearch (best_solution) 
best_cost ← CalculateCost (best_solution) 
end if 
end for 
 
return best_solution, best_cost 
End 

 
3.3.2.  PSO Algorithm 
Particle Swarm Optimization (PSO) is a computational method used for optimizing nonlinear functions. 
Developed by James Kennedy and Russell Eberhart in 1995, PSO is inspired by the social behaviour of animals, 
such as bird flocking and fish schooling. It is classified under swarm intelligence techniques, where the 
collective behaviour of decentralized and self-organized systems is harnessed to solve optimization problems. 

 Particles and Swarms: Each particle represents a potential solution within the search space. A particle’s 
position corresponds to a candidate solution, and it moves through the solution space with a certain velocity. 
A collection of particles is known as a swarm. The swarm's behaviour is governed by simple rules based on both 
individual experiences and social interactions. 
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 Velocity Update: The velocity of each particle is updated based on its own best position (personal best) 
and the global best position found by any particle in the swarm: 

 

𝑣𝑖(𝑡 + 1) = 𝑤. 𝑣𝑖(𝑡) + 𝑐1. 𝑟1 . (𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2. 𝑟2 . (𝑔 − 𝑥𝑖(𝑡))                                                     (1) 

where: 
𝒗𝒊(𝒕) = is the velocity of particle i at time t. 
𝒘 is the inertia weight. 
𝒄𝟏 and 𝒄𝟐 are cognitive and social coefficients.  
𝒓𝟏 and 𝒓𝟐 are random numbers between 0 and 1.  
𝒑𝒊 is the personal best position of particle i. 
𝒈 is the global best position found by the swarm. 
 
● Position Update: The position of each particle is updated by adding the new velocity to the current 
position: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝑣𝑖(𝑡 + 1)                                     (2) 
where: 𝒙𝒊(𝒕) is the position of particle i at time t. 
●  Fitness Evaluation: Each particle evaluates its fitness at the updated position. If the fitness at the 
current position is better than the fitness at the personal best position, the personal best is updated: 
 

𝑝𝑖(𝑡 + 1) = {
 𝑥𝑖(𝑡 + 1) , if 𝑓( 𝑥𝑖(𝑡 + 1)) < 𝑓(𝑝𝑖(𝑡))

𝑝𝑖(𝑡) ,               otherwise                                
  (3) 

 
The pseudocode of the algorithm stated below: 
 

A l g o r i t h m  2 :  Pseudocode of PSO algorithm 
Input: 
n_particles        // Number of particles 
n_dimensions // Number of dimensions in search 
space 
n_iterations     // Maximum number of iterations 
w                       // Inertia weight 
𝑐1                       // Cognitive coefficient 
𝑐2                      // Social coefficient 
bounds            // Search space bounds [min, max] 
for each dimension 
Output: 
global_best_position  // Best solution found 
global_best_fitness   // Fitness of best solution 
 
Begin 
// Initialize particle swarm 
Swarm ← InitializeSwarm(n_particles, 
n_dimensions, bounds) 
global_best_position ← null 
global_best_fitness ← ∞ 
 
// Main loop 
for iteration = 1 to n_iterations do 
 
// Update each particle 
for each particle in Swarm do 
 
// Calculate fitness 
current_fitness 
←EvaluateFitness(particle.position) 
 
// Update particle's best 
if current_fitness < particle.best_fitness then 
particle.best_position ← particle.position 
particle.best_fitness ← current_fitness 
end if 
// Update global best 
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if current_fitness < global_best_fitness then 
global_best_position ← particle.position 
global_best_fitness ← current_fitness 
end if 
end for 
// Update velocities and positions 
for each particle in Swarm do 
UpdateVelocity(particle, w, 𝑐1, 𝑐2) 
UpdatePosition(particle, bounds) 
end for 
// Optional: Update parameters 
w ← UpdateInertiaWeight(iteration) 
end for 
return global_best_position, 
global_best_fitness 
End 

 
3.3.3.  ACO-PSO Hybrid Algorithm 
The proposed hybrid ACO-PSO algorithm comprises several steps: defining constants, initializing a dictionary 
for validated symptoms, splitting the dataset, converting categorical data to numeric values, fetching and pre-
processing data, and applying ACO and PSO methods for ASD classification. The algorithm also involves 
generating random predictions, computing evaluation metrics, and plotting the confusion matrix. The 
comprehensive experimental setup, which includes data splitting, cross-validation, feature selection, and 
model training, aims to develop a robust and accurate classification model for ASD. The dataset was divided 
into training and testing sets with a 6:4 ratio. The training set was utilized for model training, parameter 
optimization, and feature selection, while the testing set was reserved for evaluating the model's performance 
on unseen data. Features selected by the ACO-PSO hybrid algorithm are used as input. The workflow of the 
proposed algorithm is presented in Fig.2.  
 

 
Fig.2. Workflow of ACO-PSO Model 
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Random Forest (RF) model constitutes a formidable ensemble learning algorithm adept at the precise 
classification of individuals within the framework of ASD diagnostic evaluations. Nevertheless, the 
effectiveness of these models may be further augmented through the judicious incorporation of bio -
inspired optimization algorithms. The collaboration of ACO and PSO unveils a noteworthy opportunity 
for refining the performance of Random Forest classifiers when they are applied to ASD datasets. Through 
the tuning of these parameters via the swarm intelligence capabilities of PSO, the Random Forest model 
can be customized to reflect the distinct characteristics of the ASD dataset, thereby enabling it to leverage 
the underlying patterns and interrelations. The synergistic integration of ACO's feature selection 
capabilities and PSO's hyperparameter optimization functions holds the potential to produce a highly 
accurate and efficient Random Forest classifier for ASD detection, surpassing models that do not utilize 
these bio-inspired optimization methodologies. This hybrid methodology capitalizes on the strengths of 
multiple algorithms to address the intricate challenge of ASD classification with enhanced precision, 
robustness, and dependability. 
The pseudocode of the hybrid algorithm stated below: 

 
A l g o r i t h m  3 :  Pseudocode of proposed ACO-PSO algorithm 

Input: 
n_ants               // Number of ants 
n_iterations     // Maximum number of iterations 
n_particles        // Number of particles 
n_dimensions   // Number of dimensions in search 
space 
n_iterations       // Maximum number of iterations 
α                       // ACO pheromone influence parameter 
β                 // ACO heuristic influence parameter 
ρ                 // ACO pheromone evaporation rate 
 
w                //PSO inertia weight 
𝑐1                //PSO cognitive coefficient 
𝑐2                //PSO social coefficient 
bounds            // Search space bounds [min, max] 
for each dimension 
Output: 
global_best_position  // Best solution found 
global_best_fitness   // Fitness of best solution 
 
Begin 
                                     // Initialize ant colony and 
particle swarm 
Ants ← InitializeAnts(n_ants, n_dimensions, 
bounds) 
Swarm ← Initialize Swarm(n_particles, 
n_dimensions, bounds) 
global_best_position ← null 
global_best_fitness ← ∞ 
 
// Main loop 
for iteration = 1 to n_iterations do 
 
// Ant Colony Optimization phase 
for each ant in Ants do 
 
// Construct solution using pheromone and 
heuristic information 
ant_solution ← ConstructSolution(ant, α, β) 
 
// Evaluate fitness of solution 
ant_fitness ← EvaluateFitness(ant_solution) 
 
// Update pheromone trails 
UpdatePheromoneTrails(Ants, ant_solution, 
ant_fitness, ρ) 
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// Update global best if necessary 
if ant_fitness < global_best_fitness then 
global_best_position ← ant_solution 
global_best_fitness ← ant_fitness 
end if 
end for 
 
// Particle Swarm Optimization phase 
for each particle in Swarm do 
 
// Calculate fitness 
particle_fitness 
←EvaluateFitness(particle.position) 
 
// Update particle's best 
if particle_fitness < particle.best_fitness then 
particle.best_position ← particle.position 
particle.best_fitness ← particle_fitness 
end if 
 
// Update global best 
if particle_fitness < global_best_fitness then 
global_best_position ← particle.position 
global_best_fitness ← particle_fitness 
end if 
 
// Update velocity and position 
UpdateVelocity(particle, w, 𝑐1, 𝑐2) 
UpdatePosition(particle, bounds) 
end for 
end for 
 
return  
global_best_position,  
global_best_fitness 
End 

 
3.3.4.  Used Evaluation Metrics 
 
3.3.4.1.  Confusion Matrix 
The confusion matrix serves as an essential tool for the assessment of the efficacy of an ASD detection model 
in toddlers. It offers a comprehensive delineation of the model's predictions in relation to the established 
ground truth labels. In this framework, the four principal components of the confusion matrix are: 

 True Positives (TP): These signify the toddlers who were accurately recognized by the model as exhibiting 
characteristics of ASD. The precise detection of ASD in early childhood is paramount, as timely intervention 
can substantially enhance developmental trajectories. 
 True Negatives (TN): These pertain to the toddlers who were accurately classified as not exhibiting ASD. 
The correct identification of non-ASD instances is equally significant, as it aids in the prevention of unnecessary 
further assessments and alleviates potential anxiety for caregivers. 
 False Positives (FP): These denote the toddlers who were erroneously predicted to have ASD, when in 
actuality, they did not manifest such conditions. Although false positives may necessitate additional 
evaluations, they can also induce unwarranted stress for families and result in the inefficient allocation of 
healthcare resources. 
 False Negatives (FN): These are the toddlers who were overlooked by the model, indicating that they were 
inaccurately classified as not having ASD when they indeed did. The minimization of false negatives is vital, as 
delays or omissions in diagnosing ASD can culminate in missed opportunities for early intervention and 
support. 
 
3.3.4.2.  Performance Metrics 
Accuracy, Precision, Recall, and F1-Score metrics furnish a more comprehensive appraisal of the model's 
performance within the domain of ASD detection in toddlers. 
 Accuracy: It quantifies the overall fraction of toddlers (both with and without ASD) that were correctly 
classified. While a strong emphasis on accuracy is preferred, it may not be the most revealing metric, 
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particularly in cases where the dataset is unbalanced (i.e., there are considerably more non-ASD cases relative 
to ASD cases). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                      (4) 

 

 Precision (Specificity): It assesses the model's proficiency in accurately identifying toddlers with ASD, 
thereby reducing the incidence of false positives. This is of particular significance, as false positives can result 
in undue stress and additional testing requirements for families. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (5) 

 

 Recall (Sensitivity): This evaluates the model's ability to accurately identify all toddlers with ASD, 
thereby mitigating the occurrence of false negatives. This metric is essential, as the failure to detect ASD cases 
can lead to lost opportunities for early intervention, which is critical for enhancing long-term outcomes. 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (6) 

 

 F1-Score:  It delivers a balanced evaluation that accounts for both precision and recall. This metric proves 
to be particularly beneficial when dealing with imbalanced datasets, as it aids in ensuring that the model does 
not demonstrate a significant bias towards the majority class (non-ASD) at the detriment of the minority class 
(ASD). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =   
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
            (7) 

 
The Table 5 illustrated the comparative analysis of ACO, PSO and proposed PSO-ACO-RF Models in terms 
of performance metrics. 
 

Table.5. Obtained results of the models in terms of performance metrics 
Model Performance Metrics 

Precisio
n (%) 

Recall 
(%) 

F1-Score 
(%) 

Accurac
y (%) 

ACO-RF 65 18 24 45 
PSO-RF 58 88 71 62 
ACO-
PSO-RF 

100 97 99 98 

 
Abbreviations: ACO, Ant Colony Optimization; PSO, Particle Swarm Optimization; RF, Random Forest 
 

4.  RESULTS AND ANALYSIS 
 
The study elucidated the constraints inherent in isolated implementations of ACO and PSO, which encountered 
challenges regarding diminished accuracy alongside elevated frequencies of false positives and false negatives. 
Conversely, the hybrid model attained a harmonious equilibrium across all principal performance indicators. 
The values for recall and precision surpassed 97% and 99% respectively, while the F1-score—a harmonic mean 
of precision and recall—was optimized to 99% as shown in Fig.3. This equilibrium is crucial in the realm of 
medical diagnostics, ensuring that the model demonstrates not only accuracy but also fairness in its 
predictions. The hybrid ACO-PSO-RF model effectively addresses multiple practical challenges associated with 
the early detection of ASD. Its non-invasive characteristics and high operational efficiency render it an 
exemplary candidate for incorporation into clinical paradigms, particularly within resource-constrained 
environments. By automating the diagnostic procedure, the model mitigates dependence on subjective human 
assessments, thereby standardizing the diagnostic process for ASD across heterogeneous populations. 
Moreover, its inherent adaptability guarantees that the model can be scaled to accommodate other datasets, 
facilitating broader applicability.  
 
The hybrid ACO-PSO-RF model exhibited an exceptional accuracy rate of about 98% in identifying ASD in 
toddlers. This performance tier illustrates a marked enhancement in contrast to the individual 
implementations of ACO and PSO, yielding accuracies close to 50% and 60%, correspondingly (Shown in 
Fig.4). The amalgamation of these two optimization methodologies adeptly capitalized on their respective 
strengths—ACO’s proficiency in discerning pertinent features from the dataset and PSO’s optimization of 
classifier parameters. The resulting high accuracy accentuates the model's potential to reliably assist in the 
early detection of ASD, addressing the shortcomings associated with traditional diagnostic approaches that are 
frequently subjective and protracted. The confusion matrix provided profound insights into the model’s 
performance. The substantial TP and TN rates corroborated the hybrid model’s efficacy in accurately 
identifying ASD cases and excluding non-ASD instances as shown in Fig.5. Concurrently, the minimal FP and 
FN rates illustrated the model’s dependability in reducing diagnostic inaccuracies. These outcomes are 
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paramount for early intervention initiatives, where precise identification of ASD cases can facilitate timely and 
effective support for affected children.  
 

 
(A) 

 

 
(B) 

 

 
(C) 

Fig.3. Comparative analysis of models in terms of (A) Recall (B) Precision and (C) F1-Score 
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Fig.4. Accuracy levels of ACO, PSO and proposed ACO-PSO models 
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(B) 

 



6327 Debabrata Barik et.al / Kuey, 30(1), 9575  

 

 
(C) 

Fig.5. Confusion matrix of (A) ACO (B) PSO and (C) Hybrid ACO-PSO model 
 

5.  CONCLUSION 
 
This analysis reveals the potential of a hybrid technique that combines Ant Colony Optimization and Particle 
Swarm Optimization methods for the prompt detection of Autism Spectrum Disorder in toddlers. By 
integrating these nature-inspired computational methods, the research significantly boosts diagnostic 
precision, achieving an impressive accuracy range between 94% and 98%. This noteworthy enhancement 
compared to conventional diagnostic techniques emphasizes the potential of automated tools in clinical 
environments, enabling prompt intervention and assistance for children diagnosed with ASD. 
The model's strategy for optimizing feature selection and parameter adjustment not only refines the diagnostic 
procedure but also tackles practical issues related to early ASD identification, including the demand for non-
invasive and affordable options. The results underscore the necessity of creating flexible diagnostic instruments 
that can be effectively employed in various healthcare settings, even those with limited resources. 
Future research should concentrate on validating the model across different populations and examining its 
applicability to other neurological disorders. In conclusion, this study provides meaningful contributions to the 
realm of computational medicine and lays the groundwork for further progress in ASD diagnosis, ultimately 
enhancing outcomes for affected children and their families. 
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	where:
	,𝒗-𝒊.,𝒕.= is the velocity of particle i at time t.
	𝒘 is the inertia weight.
	,𝒄-𝟏. and ,𝒄-𝟐. are cognitive and social coefficients.
	,𝒓-𝟏. and ,𝒓-𝟐. are random numbers between 0 and 1.
	,𝒑-𝒊 .is the personal best position of particle i.
	𝒈 is the global best position found by the swarm.

