
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Educational Administration: Theory and Practice 
2024, 30(1), 6247-6257 
ISSN: 2148-2403 

https://kuey.net/                                                         Research Article 
 

Extending Λcdm Cosmology In Presence Of Curvature And 
Anisotropy: A Model Comparison 

 
Vikrant Yadav1, Rajpal2* 

 

1,2*School of Basic and Applied Sciences, Raffles University, Neemrana - 301705, Rajasthan, India. 

 
*Corresponding Author: Rajpal 
arajpal05041985@gmail.com 

 
Citation: Rajpal, et.al (2024). Extending Λcdm Cosmology In Presence Of Curvature And Anisotropy: A Model Comparison, Educational 
Administration: Theory and Practice, 30(1) 6247-6257 
Doi: 10.53555/kuey.v29i3.9645 

 
ARTICLE INFO ABSTRACT 

 In this work, we present observational constraints on the most anisotropic 
extensions of the standard ΛCDM model namely ΛCDM+𝛺𝜅0 , 

ΛCDM+𝛺𝜅0 +𝛺𝜎0 , 𝑤𝐶𝐷𝑀 + 𝛺𝜅0 ,  wCDM+𝛺𝜅0 +𝛺𝜎0  based on observational 

data such as SH0ES Cepheid host distance anchors, Big Bang Nucleosynthesis 
(BBN), Pantheon Plus (PP) compilation of Supernovae Type Ia (SNe Ia), Baryon 
Acoustic Oscillations (BAO), and Cosmic Chronometers (CC). In every analysis, 
the top bounds on the anisotropy are around 10−13 at 95% CL. In every instance 
including both data combinations, the quintessence behavior of dark energy is 
preferred at 68% CL. H0 = 72.25 ± 0.84 km s−1 Mpc−1 in the wCDM+𝛺𝜅0 +𝛺𝜎0  

model and H0 = 72.48 ± 0.89 km s−1 Mpc−1 in the ΛCDM+𝛺𝜅0 +𝛺𝜎0  model, both 

at 68% CL, are the highest values of the Hubble constant found in the analysis.  
 
Keywords: dark energy, cosmological constant, curvature, anisotropy 

 
I.INTRODUCTION 

 
‘Over’ the last few decades, the scientific community has embraced Lambda CDM as the standard model in 
cosmology based on the theory of inflation [1–4]. It describes the universe on vast scales through the spatially 
flat Friedmann-Lemaˆıtre-Robertson Walker (FLRW) spacetime metric, which is a homogeneous, isotropic, 
and flat Robertson-Walker (RW) spacetime metric. Meanwhile, General Relativity (GR) is used to describe the 
dynamics of the universe. This model has excellent agreement with a wide range of observational data from 
various regions of the universe[5–12]. Nevertheless, recent studies have detected certain inconsistencies in the 
numerical values of specific cosmological parameters [13, 14], a significant matter of concern within cosmology 
and the domain of theoretical physics. It could suggest the need for new physics beyond the established 
fundamental theories, extending the ΛCDM model. 
Firstly, we summarize spatially curvature (flat or non-flat) within the generalized of ΛCDM model. In the past 
few years, the cosmic community was not sure about the curvature of the universe, whether it is flat or not [15] 
but some observational evidence has supported that the universe is spatially flat [16–21]. However, a detailed 
[7] analysis of the CMB temperature and polarization data using Planck satellite observations suggested that a 
closed universe (with 𝛺𝜅  = −0.044+0.018−0.015 for TT, TE, EE+lowE) was preferred, with a statistical 

significance of about 3σ. This conclusion is supported not only by the low CMB anisotropy quadrupole but also 
by WMAP CMB and Effective Field Theories of Large-Scale Structure with Baryon Acoustic Oscillations (BAO) 
data [22, 23]. When combining Planck CMB data with astrophysics data such as BAO, cosmic chronometers 
(CC), and type Ia Supernovae (SNIa), diminishes the significance of favoring a closed universe [24–28]. 
Additionally, as per the analysis in [29] demonstrated that 𝛺𝜅  = 0.078+0.086 −0.099 could only be obtained 

from Sloan Digital Sky Survey’s BAO measurements, combined with baryon density and CMB monopole 
temperature. In fact, the observations indicating a small curvature cannot be considered as evidence for a 
spatially flat universe in the absence of a solid theoretical argument [30] and the assumption of spatial flatness 
instead of spatial curvature could lead to significant changes in cosmological parameters [31]. We are curious 
to explore the impact of considering the curvature of the universe on the current cosmological tensions and 
free parameter of the dark energy. 
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The Hubble constant (H0) is a crucial parameter within modern cosmology that delineates the universe’s 
expansion rate. However, there has been a significant debate and interest in recent years regarding the precise 
value of H0. Several observation methods have led to slightly different results, which has caused tensions in 
determining H0, known as Hubble tension. This tension refers to the most statistically significant disagreement 
at 5.0σ between the Planck collaboration value of H0 = 67.27 ± 0.60 km s−1 Mpc−1 at a 68% confidence level 
(CL),[7] assumed by the ΛCDM, and SH0ES collaboration constraint value of H0 = 73.27 ± 1.04 km s−1 Mpc−1 
at a 68% CL, based on the supernovae calibrated by Cepheids [32]. In addition, there are several late-time 
measurements that suggest a higher value for the Hubble constant, which is in disagreement with the Planck-
CMB estimate. For instance, the Megamaser Cosmology Project [33] found H0 = 73.9 ± 3.0 km s−1 Mpc−1, while 
the Surface Brightness Fluctuations [34] gave a value of H0 = 73.3 ± 2.4 km s−1 Mpc−1. However, The Planck-
CMB data suggests a lower value of H0, which is consistent with the constraints of BAO and Big Bang 
Nucleosynthesis (BBN), alongside corroborative evidence from other CMB experiments like ACT-PolDR4 [35], 
ACT-PolDR6 [36], and SPT-3G [37]. This disparity has been widely discussed in the literature and could 
indicate the existence of novel physics outside the standard model of cosmology[25, 28, 38–41]. There are 
several extensions of ΛCDM proposed to address the H0 tension, such as decaying DM[42–45], DM-DE 
interactions[46 –50], introducing early DE, and introducing a sign-switching DE at intermediate redshifts (z 
∼2)[51–54]. Recent review articles provide more information on the current state of  H0 tension and possible 
solutions[13, 55]. 
Further, we now discuss the expansion anisotropy and its consequences in terms of the present-day density 
parameter, denoted 𝛺𝜎0 . The Wilkinson Microwave Anisotropy Probe (WMAP) experiment first observed that 

the slight fluctuations in the CMB from various directions of the sky [56] and other observational data sets such 
as Gamma Ray Bursts (GRBs), Quasars, Galaxies, and SNe Ia also support this finding. These fluctuations have 
been statistically observed to be of the order ∼ 10−9, as stated in reference [57], after analyzing the temperature 
anisotropy data from the Planck Legacy. The model-independent upper bound of the current expansion 
anisotropy density parameter is of order ∼ 10−3 from type Ia supernovae [58–60]. This upper bound is 
consistent with model-dependence using the combination of H(z) and SNIa data [61, 62]. Generally, the model-
dependent upper bounds are much tighter in the range from 10−11 to 10−23. In [53], the upper bound of the 
anisotropy density parameters is constrained to be the order of ∼ 10−2 from the combined H(z) and SnIa 
Pantheon data set. However, this constraint becomes even tighter, up to the orders of ∼ 10−17, when considering 
the combined CMB+BAO data set. A similar investigation is carried out in [63] by considering anisotropic 
expansion. The upper limit is usually strongly constrained by combining the CMB data sets with other 
cosmological datasets. However, some studies in the literature have shown that the upper limit of the 
anisotropy parameter can reach an approximation of ∼ 10−14[63, 64], even with a CMB independent 
combination of the data sets. 
We are motivated by a recent [63] on the anisotropy model from various combinations of BAO, BBN, CC, PP, 
and SH0ES data sets. This study has hinted that the drag redshift could be treated as a free parameter, which 
is closely associated with the Hubble tension and may alleviate it. In this work, our aim is to investigate how 
the spatial curvature of the universe affects on other cosmological parameters and to constrain the Hubble 
parameter by utilizing a different set of data combinations. The structure of the paper can be summarized as 
follows: In the next section, we have discussed the FLRW spacetime metric, Bianchi-type space-time metric 
and the cosmological models under consideration, while in section III, we present the complete overview of the 
observational dataset and analysis methodology. After that, in section IV, we present the results and discuss 
findings of this analysis. Finally, we conclude with a summary of our work in section V. 
 

II.FORMULATING EQUATIONS AND MODELS 
 
In the present section, we shall discuss the spacetime metrics, namely, FLRW metric, Bianchi type-I metric. 
These metrics have the property of spatial homogeneity but not necessarily isotropy. Also, we shall calculate 
the Ricci scalar and anisotropic parameter for each metric and define the corresponding models in the final 
subsection. 
 
➔  FLRW spacetime metric 
Consider the FLRW metric, which can be formulated in cartesian coordinates as follows:  

𝑑𝑠2 = −𝑑𝑡2 + 𝑠2 𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

[1+
𝜅

4
(𝑥2+𝑦2+𝑧2)]2

                           (1) 

where κ represents the curvature scalar, which represents open, flat, and closed universes with κ < 0, κ = 0 and 
κ > 0, respectively. Also, the Einstein’s field equations from General Relativity, are given by 

𝐺𝜇𝜈 ≡  𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇𝜇𝜈 ,                              (2) 

where 𝐺𝜇𝜈 , 𝑅𝜇𝜈 , R, and 𝑔𝜇𝜈 are representing Einstein tensor, Ricci tensor, Ricci scalar, and metric tensor, 

respectively. Again, on the right hand side, G, and 𝑇𝜇𝜈 are representing Newton’s gravitational constant and 

energy-momentum tensor, respectively. The most commonly used form of the total energy-momentum tensor 
for a perfect fluid is: 
T𝜈𝜇= diag[-⍴,p,p,p].                                                   (3) 
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As a consequence of the twice-contracted Bianchi identity, that is, Gμν
;ν = 0, the Einstein’s field equations 

(2)satisfy the conservation equation which is as follows: 
Tμν

;ν = 0.                         (4) 
Further, for a perfect fluid matter distribution, (4) simplifies to 
𝜌̇ +  3𝐻(1 +  𝑤)𝜌 =  0,                (5) 
where the overdot represents a derivative of the parameter  with respect to the cosmic time t. For a perfect fluid 
i, with pressure pi, energy density ρi, and constant equation of state (EoS) defined by wi = pi/ρi, the continuity 
equation (5) describes the evolution of its energy density as follows: 
ρi = ρi0s−3(1+wi),                (6) 
where ρi0 represents the present-day value of ρi, corresponding to s = s0 = 1, the present-day value of the scale 
factor. The subscript ‘0’ attached to any quantity denotes its value in the present-day Universe. We assume that 
the presence of standard cosmological components in the Universe, such as radiation (consisting of photons 
and neutrinos) characterized by EoS parameter wr = pr/ρr = 1/3 , pressureless fluid (including baryonic and 
cold dark matter) with EoS wm = pm/ρm = 0, and EoS of dark energy denoted as wde0 to be fixed by observations 
in the analysis. These energy constituents interact only through gravity. As a consequence, each energy source 
independently satisfies the continuity equation (5), and considering (6), this leads to 
ρ ≡ ρr + ρm + ρde0 = ρr0s−4 + ρm0s−3 + ρde0s−3(1+wde0).      (7) 
Now, Einstein’s gravitational equation (2) for the FLRW metric (1) leads to the differential equation is given by 

3
𝑠2̇

𝑠2 = 8𝜋𝐺𝜌 − 3
𝜅

𝑠2                  (8) 

−2
𝑠2 ̈

𝑠2 −
𝑠2̇

𝑠2 = 8𝜋𝐺𝑝 −
𝜅

𝑠2           (9) 

Here, the shear scalar (σ2 = 0 ) and Ricci scalar (R = 6κs−2) are derived from FLRW metric (2). 
 
➔  Bianchi type-I spacetime metric 
Further, we can formulate a spatially flat, homogeneous, and anisotropic universe through the Bianchi type-I 
spacetime metric. This metric introduces different scale factors along three orthogonal directions can be 
written as 
ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2,        (10) 
where {A, B, C} represent the directional scale factors along three different spatial directions {x, y, z}, each 

being a function of cosmic time t only. The corresponding average expansion scale factor: s  = (𝐴𝐵𝐶)
1

3 , arising 

from the average Hubble parameter: 𝐻 =  
𝑠̇

𝑠
=

1

3
(𝐻𝑥 + 𝐻𝑦 + 𝐻𝑧), where 𝐻𝑥 =

𝐴̇

𝐴
, 𝐻𝑦 =

𝐵̇

𝐵
, and 𝐻𝑧 =

𝐶̇

𝐶
 are the 

directional 
Hubble parameters defined three along different spatial directions {x, y, z}. 
 
We obtained the following set of differential equations by Einstein’s gravitational equation (2) for the Bianchi 
type-I metric (10): 
𝐴̇

𝐴

𝐵̇

𝐵
+

𝐵̇

𝐵

𝐶̇

𝐶
+

𝐴̇

𝐴

𝐶̇

𝐶
= 8𝜋𝐺𝜌,          (11) 

−
𝐵̈

𝐵
−

𝐶̈

𝐶
−

𝐵̇

𝐵

𝐶̇

𝐶
= 8𝜋𝐺𝑝,           (12) 

−
𝐴̈

𝐴
−

𝐶̈

𝐶
−

𝐴̇

𝐴

𝐶̇

𝐶
= 8𝜋𝐺𝑝,            (13) 

−
𝐴̈

𝐴
−

𝐵̈

𝐵
−

𝐴̇

𝐴

𝐵̇

𝐵
= 8𝜋𝐺𝑝.           (14) 

The shear scalar expressed through directional Hubble parameters reads: 

𝜎2 =
1

6
[(𝐻𝑦 − 𝐻𝑥)2 + (𝐻𝑧 − 𝐻𝑦)2 + (𝐻𝑥 − 𝐻𝑧)2].            (15) 

The equations (12)-(14) can be recast in terms of directional Hubble parameters as follows: 

𝐻𝑥̇ − 𝐻𝑦̇ + 3𝐻(𝐻𝑥  − 𝐻𝑦) = 0,             (16) 

𝐻𝑦̇ − 𝐻𝑧̇ + 3𝐻(𝐻𝑦  − 𝐻𝑧) = 0,          (17) 

𝐻𝑧̇ − 𝐻𝑥̇ + 3𝐻(𝐻𝑧  − 𝐻𝑥) = 0.          (18) 
The equation governing shear propagation is derived by the time derivative of σ2 in Eq. (15) along with these 
equations (16)-(18) reads as: 
𝜎̇ + 3𝐻𝜎 = 0,                (19) 
which on integration yields 
𝜎2 = 𝜎0

2𝑠−6.                  (20) 
Here, the Ricci scalar is null for Bianchi type-I spacetime metric (10). 
 
➔   MODELS 
The generalized Friedmann equation for the non-flat, homogeneous, and anisotropic spacetime metric with 
non-tilted perfect fluids is written as: 
3H2 = 8πG(ρ + ρκ + ρσ ),                (21)49 
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where ρ represents the energy density of universe given in equation (7), while ρκ, ρσ stand for the energy 
densities of spatial curvature and expansion anisotropy respectively. These are given by: 

𝜌𝜅 =
𝑅−1

2

1

8𝜋𝐺
, 𝜌𝜎 =

𝜎2

8𝜋𝐺
.               (22)50 

Using Equations (7), (49), and (50), we derive the comprehensive Friedmann equation for a non-flat, 
homogeneous, and anisotropic spacetime metric with non-tilted perfect fluids: 
𝐻2(𝑠)

𝐻0
2 = 𝛺𝜎0𝑠−6 + 𝛺𝑟0𝑠−4 + 𝛺𝑚0𝑠−3+𝛺𝜅0𝑠−2 + 𝛺𝑑𝑒0𝑠−3(1+𝑤𝑑𝑒0).             (23)51 

Here, 𝛺𝜎0 represents the expansion anisotropy parameter, which is non-negative, while 𝛺𝑟0, 𝛺𝑚0, 𝛺𝜅0  and 𝛺𝑑𝑒0 
denote the radiation, matter, curvature, and dark energy density parameters, respectively. These parameters 
satisfy the equation: 
𝛺𝜎0 + 𝛺𝑟0 + 𝛺𝑚0 + 𝛺𝜅0 + 𝛺𝑑𝑒0 = 1.                  (24) 
The absolute CMB monopole temperature, T0=2.7255±0.0006 K, measured by FIRAS, provides precise 
constraints on the present-day radiation energy density, expressed as: 

𝛺𝑟0 ≡  
 𝜌𝑟0

3𝐻0
2 = 2.469 x 10−5ℎ−2(1 + 0.2271𝑁𝑒𝑓𝑓).               (25) 

Here, h=H0/(100 km s−1Mpc−1) and Neff=3.046 represents the standard number of effective neutrino species 
with a minimum allowed mass of m𝜈 = 0.06 eV. 
The generalized Friedmann eq. (51) describes a non-flat, homogeneous, and anisotropic universe, denoted by 
wCDM+𝛺𝜅0 +𝛺𝜎0  with the set of free parameters PwCDM+𝛺𝜅0 +𝛺𝜎0 ={𝜔𝑏, 𝜔𝑐, H0, 𝛺𝜎0 , 𝛺𝜅0 , 𝑤𝑑𝑒0}. When 

there is no expansion anisotropy present in eq.(51) then this equation reduces to the form: 
𝐻2(𝑠)

𝐻0
2 = 𝛺𝑟0𝑠−4 + 𝛺𝑚0𝑠−3+𝛺𝜅0𝑠−2 + 𝛺𝑑𝑒0𝑠−3(1+𝑤𝑑𝑒0),            (26) 

which shall be denoted by wCDM+𝛺𝜅0 model with  the set of free parameters PwCDM+𝛺𝜅0 ={𝜔𝑏, 𝜔𝑐, H0, 𝛺𝜅0 , 

𝑤𝑑𝑒0}. 
Again, if the value of the EoS parameter of dark energy, 𝑤𝑑𝑒0 , is equal to  -1, that is, the cosmological constant 
form of dark energy, then the above  anisotropic model reduces to the form: 
𝐻2(𝑠)

𝐻0
2 = 𝛺𝜎0𝑠−6 + 𝛺𝑟0𝑠−4 + 𝛺𝑚0𝑠−3+𝛺𝜅0𝑠−2 + 𝛺𝛬0,            (27) 

where  𝛺𝛬0 represents the cosmological constant form of dark energy. This model shall be denoted by 
ΛCDM+𝛺𝜅0 +𝛺𝜎0 with the set of free parameters PΛCDM+𝛺𝜅0 +𝛺𝜎0 ={𝜔𝑏, 𝜔𝑐, H0, 𝛺𝜎0 , 𝛺𝜅0 }. When there is 

no expansion anisotropy present in eq.() then  it reduces to the form: 
𝐻2(𝑠)

𝐻0
2 = 𝛺𝑟0𝑠−4 + 𝛺𝑚0𝑠−3+𝛺𝜅0𝑠−2 + 𝛺𝛬0,                   (28) 

which shall be denoted by ΛCDM+𝛺𝜅0 model with  the set of free parameters PΛCDM+𝛺𝜅0 ={𝜔𝑏, 𝜔𝑐, H0, 𝛺𝜅0 }. 

 
III.DATASETS AND METHODOLOGY 

 
Following data sets have been used this work: 
 
➔ Baryon Acoustic Oscillations (BAO) 
We analyze 14 BAO measurements obtained from the final dataset of the Sloan Digital Sky Survey (SDSS) [9]. 
These measurements provide independent constraints on angular-diameter distances and Hubble distances 
relative to the sound horizon, derived from eight distinct tracers, including galaxies, quasars, and Lyman- (Lyα) 
forests. 
The comoving size of the sound horizon at the drag epoch (𝑧𝑑) is expressed as: 

𝑟𝑑 = 𝑟𝑠(𝑧𝑑) = ∫
∞

𝑧𝑑

𝑐𝑠 𝑑𝑧

𝐻(𝑧)
,           (29)          

where the sound speed of the baryon-photon plasma is given by: 

𝑐𝑠 =
𝑐

√3(1+𝑅)
, with 𝑅 =

3𝛺𝑏0

4𝛺𝛾0(1+𝑧)
.             (30) 

Here, 𝛺𝑏0 = 0.022h−2 and 𝛺𝛾0 = 2.469 × 10−5h−2 represent the present-day physical densities of baryons and 

photons, respectively, while h = H0/100 denotes the  reduced Hubble parameter [64, 65]. 
Unlike previous studies [61, 66], which assumed a fixed 𝑧𝑑, our approach follows [63], allowing 𝑧𝑑 to vary in 
BAO data analyses for improved flexibility in model constraints. 
 
➔ Cosmic Chronometer (CC) 
We use CC data of 33 H(z) measurements spanning over the redshift values from 0.07 to 1.965 [67-74], which 
provide a basic relationship between cosmic time t, redshift z, and the Hubble parameter H(z) [75]: H(z) = 

−
1

1+𝑧

𝑑𝑧

𝑑𝑡
. 
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➔ Big Bang Nucleosynthesis (BBN) 
We employ an updated BBN estimate of the physical baryon density, 𝜔𝑏 (where 𝜔𝑏 ≡ 𝛺𝑏 h2) from experimental 

nuclear physics at the Laboratory for Underground Nuclear Astrophysics (LUNA) of the INFN Laboratori 
Nazionali del Gran Sasso in Italy [76], with a value of 0.02233 ± 0.00036. 
 
➔ Pantheon+ and SH0ES 
We use the distance moduli measurements obtained from the supernovae of Type Ia (SNe Ia). The theoretical 
apparent magnitude mB of a supernova at redshift z reads: 

𝑚𝐵 = 5𝑙𝑜𝑔10[
𝑑𝐿(𝑧)

1𝑀𝑝𝑐
] + 25 + 𝑀𝐵                    (31) 

 
where 𝑀𝐵 is the absolute magnitude, and 𝑑𝐿(𝑧) is the luminosity distance. We utilize SNe Ia distance modulus 
data from the Pantheon+ sample [77] with 1701 light curves corresponding to 1550 distinct supernovae Ia in 
the redshift range of z ∈ [0.001, 2.26], and refer to this collection as PP. When we incorporate the SH0ES 
Cepheid host distance anchors [77] into our analyses, we refer to this dataset as PPSH0ES. 
We use uniform priors: 𝜔𝑏 ∈ [0.01, 0.03], 𝜔𝑐 ∈ [0.05, 0.25], H0 ∈ [60, 80], wde0 ∈ [−2, 0], 𝛺𝜅0 ∈ [−0.3, 0.3], 

𝛺𝜎0 ∈ [0, 0.001]. Employing the aforementioned datasets, viz., BAO, CC, BBN, PP and PPSH0ES, we obtain 

the correlated Monte Carlo Markov Chain (MCMC) samples from the interface of MontePython [78] with the 
publicly available Boltzmann code CLASS [79]. Further, the MCMC samples are further analyzed using the 
python package GetDist [80]. 
 

IV.RESULTS AND DISCUSSIONS 
 
Table I presents the free and derived cosmological parameters for the ΛCDM+𝛺𝜅0 and 

ΛCDM+𝛺𝜅0 +𝛺𝜎0 models at a 68% CL, obtained from two different combinations of observational data, 

namely  BAO+CC+BBN+PP and BAO+CC+BBN+PPSH0ES.  The physical baryon density quantity is 
represented by the baryon density parameter, 10−2𝜔𝑏, which varies between 2.228 and 2.241 in these two 
models under the considered datasets. The ΛCDM+𝛺𝜅0  and ΛCDM+𝛺𝜅0 +𝛺𝜎0 models predict different 

amounts of matter using the two data combinations mentioned above. The cold dark matter density parameter, 
𝜔𝑐, which quantifies the cold dark matter density percentage, ranges from 0.217 to 0.295. The anisotropy 
parameter, 𝛺𝜎0, constrains deviations from mainstream cosmological models by providing upper bounds of < 
3.60 × 10⁻¹³ and < 3.90 × 10⁻¹³. The impact of curvature on the geometry of the cosmos is reflected in the wide 
range of values of the curvature density parameter, 𝛺𝜅0 , which ranges from -0.084 ± 0.029 to  0.141+0.054

-0.063. 

The cosmic expansion rate is measured by the Hubble constant, 𝐻0 , which varies amongst dataset combinations 
with values ranging from 67.3 ± 1.6 to 72.48 ± 0.89 km s⁻¹ Mpc⁻¹. The intrinsic brightness of Type Ia 
supernovae is described by their absolute magnitude, or 𝑀𝐵, which varies from -19.439 ± 0.049 to -19.284 ± 
0.024. Also, the matter density parameter, 𝛺𝑚0, which represents the current total matter density, varies 
between 0.266 and 0.340. The range of 1058.2 ± 1.2 to 1062.43 ± 0.89 is the decoupling redshift, 𝑧𝑑, the redshift 
at which matter and radiation dissociated. The scale of baryon acoustic oscillations (BAO) is characterized by 
the sound horizon at decoupling, 𝑟𝑑, which ranges from 137.8 ± 1.9 to 147.6 ± 3.3. The models' goodness of fit 
is indicated by the minimum chi-square (𝜒2

𝑚𝑖𝑛
) values, which vary from 1322.78 to 1438.28. 

The results in Table I demonstrate that the addition of 𝛺𝜅0  and 𝛺𝜎0  has a considerable effect on the 

cosmological parameter estimations. With certain dataset combinations suggesting somewhat closed or open 
universes, the variance in 𝛺𝜅0 suggests that there is continuous debate regarding the curvature of the universe. 
The limitations on 𝛺𝜎0  demonstrate that deviations from normal isotropy are negligible, supporting the 

assumptions of the traditional ΛCDM model. 𝐻0 values were different for the two dataset combinations; the 
BAO+CC+BBN+PPSH0ES combination had a higher value (~72 km s⁻¹ Mpc⁻¹) than the BAO+CC+BBN+PP 
combination (~67 km s⁻¹ Mpc⁻¹). This gap is consistent with the ongoing Hubble tension, where measurements 
from early- and late-universe probes do not completely align. 𝛺𝑚0  is consistently lower in the models that 

include 𝛺𝜅0  and 𝛺𝜎0 , indicating that these factors might affect the estimation of the total matter composition 

of the 
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Table I. The free and some derived parameters of the ΛCDM+𝜴𝜿𝟎  and ΛCDM+𝜴𝜿𝟎 +𝜴𝝈𝟎  

models at 68% CL from BAO+CC+BBN+PP and BAO+CC+BBN+PPSH0ES combinations of 
data are constrained (mean values with 68% CL errors). The 95% CL upper bounds for Ωσ0 are 

shown. The measurement unit for the Hubble constant H0 is km s−1Mpc−1. 

Data set BAO+CC+BBN+PP BAO+CC+BBN+PPSH0ES 

 ΛCDM+𝛺𝜅0  ΛCDM+𝛺𝜅0 +

𝛺𝜎0  

ΛCDM+𝛺𝜅0  ΛCDM+𝛺𝜅0 +

𝛺𝜎0  

10−2𝜔𝑏 2.238±0.036 2.228+0.034
-0.039 2.241±0.034 2.232±0.036 

𝜔𝑐 0.261+0.033
−0.034 0.217+0.041

−0.043 

 
0.295+0.025

−0.024 

 
0.236+0.043

−0.044 

 

𝛺𝜎0  0 < 3.60 x 10-13 0 < 3.90 x 10-13 

𝛺𝜅0  0.026±0.044 0.141+0.054
-0.063 −0.084±0.029 0.069±0.061 

𝐻0 67.3±1.6 68.3+1.5
-1.8 72.27±0.85 72.48±0.89 

𝑀𝐵 −19.439±0.049 −19.403±0.050 −19.296±0.023 −19.284±0.024 

𝛺𝑚0  0.312±0.015 0.266+0.023
-0.019 0.340±0.012 0.280±0.022 

𝑧𝑑 1059.8±1.2 1058.2±1.2 1062.43±0.89 1060.1±1.2 

𝑟𝑑 147.6±3.3 145.0±3.3 138.9±1.8 137.8±1.9 

𝜒2
𝑚𝑖𝑛 1438.28 1437.26 1326.56 1322.78 

 
 universe. The constraints on 𝑟𝑑 and 𝑧𝑑 remain within anticipated ranges, further supporting the consistency of 
conventional cosmological models with empirical data. According to the 𝜒2

𝑚𝑖𝑛 values, the models that include 

𝛺𝜅0  and 𝛺𝜎0  do not considerably reduce the fit, suggesting that the addition of these parameters has no 

discernible effect on the viability of the cosmological models. 
Table II presents the free and derived cosmological parameters for the wCDM+𝛺𝜅0 and 

wCDM+𝛺𝜅0 +𝛺𝜎0 models at a 68% CL, obtained from two different combinations of observational  

 
Table II. The free and some derived parameters of the wCDM+𝜴𝜿𝟎  and wCDM+𝜴𝜿𝟎 +𝜴𝝈𝟎  

models at 68% CL from BAO+CC+BBN+PP and BAO+CC+BBN+PPSH0ES combinations of 
data are constrained (mean values with 68% CL errors). The 95% CL upper bounds for Ωσ0 are 

shown. The measurement unit for the Hubble constant H0 is km s−1Mpc−1. 

Data set BAO+CC+BBN+PP BAO+CC+BBN+PPSH0ES 

 wCDM+𝛺𝜅0  wCDM+𝛺𝜅0 +

𝛺𝜎0  

wCDM+𝛺𝜅0  wCDM+𝛺𝜅0 +

𝛺𝜎0  

10−2𝜔𝑏 2.238±0.035 2.230±0.035 2.240±0.036 2.230±0.036 

𝜔𝑐  0.264+0.034
−0.035 0.221+0.044

−0.045 

 
0.298+0.025

−0.026 

 
0.238+0.041

−0.043 

 

𝛺𝜎0  0 < 3.50 x 10-13 0 < 3.90 x 10-13 

𝛺𝜅0  −0.069±0.081 0.032±0.086 −0.188±0.066 −0.042±0.081 

𝑤𝑑𝑒0  −0.892+0.076
−0.052 −0.871+0.084

−0.058 

 
−0.892+0.063

−0.046 

 
−0.860+0.066

−0.053 

 

𝐻0 67.2±1.6 68.2±1.7 72.19±0.87 72.25±0.84 

𝑀𝐵 −19.436±0.048 −19.398±0.051 −19.292±0.024 −19.281±0.023 
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𝛺𝑚0  0.265±0.017 0.224±0.023 0.299±0.013 0.239±0.022 

𝑧𝑑  1059.8±1.2 1058.5±1.3 1062.47±0.91 1060.0±1.2 

𝑟𝑑 147.4±3.3 144.6±3.3 138.7±1.9 137.5±1.9 

𝜒2
𝑚𝑖𝑛 1435.4 1434.22 1322.94 1319.06 

 
data, namely  BAO+CC+BBN+PP and BAO+CC+BBN+PPSH0ES. All scenarios have the same constraints on 
10−2𝜔𝑏, which ranges from 2.230 to 2.240 with very slight differences between models and datasets. The 
projected matter content for various assumptions is reflected in the variation of 𝜔𝑐, which ranges from 0.221 
to 0.298. With upper bounds of < 3.50 × 10⁻¹³ and < 3.90 × 10⁻¹³, 𝛺𝜎0 is limited, suggesting little departure 
from the conventional cosmological model. A broad range of values for 𝛺𝜅0 , from -0.188 ± 0.066 to 0.032 ± 

0.086, illustrates how spatial curvature plays its role in the wCDM+𝛺𝜅0 and wCDM+𝛺𝜅0 +𝛺𝜎0 models.  A 

potential dynamical aspect of dark energy is implied by the dark energy  

 
Figure 1: Two-dimensional marginalized confidence regions (at 68% and 95% CL) of 𝜴𝜿𝟎- 𝜴𝝈𝟎  

for wCDM+𝜴𝜿𝟎 +𝜴𝝈𝟎  model from BAO+CC+BBN+PP and BAO+CC+BBN+PPSH0ES data 

combinations. 
 
equation of state parameter, 𝑤𝑑𝑒0 , which deviates from the typical ΛCDM value of -1 and ranges between -

0.892 and -0.860. The estimates of 𝐻0 vary from 67.2 ± 1.6 to 72.25 ± 0.84 km s⁻¹ Mpc⁻¹, revealing variations 
in the cosmic expansion rate. Also,  𝑀𝐵 varies slightly, ranging from -19.436 ± 0.048 to -19.281 ± 0.023. 
Variations in model assumptions and dataset combinations are reflected in the range of 0.224 to 0.299 for 
𝛺𝑚0 . See Figure 1, Figure 2 and Figure 3 to observe the behaviour of 𝛺𝜅0 with other parameters of interest.   

𝑟𝑑 ranges from 137.5 ± 1.9 to 147.4 ± 3.3, while 𝑧𝑑 is restricted to 1058.5 ± 1.3 and 1062.47 ± 0.91. 𝜒2
𝑚𝑖𝑛

 ranges 

from 1319.06 to 1435.4. 
We will now carry out the model comparison. Tables I and II show that, in contrast to the ΛCDM model, the 
wCDM model permits a time-dependent dark energy equation of state, that is, 𝑤𝑑𝑒0 . The values of 𝑤𝑑𝑒0  

exhibit slight departures from the conventional cosmological constant assumption 𝑤𝑑𝑒0 = -1 and range from 

−0.892+0.076
−0.052 to −0.860+0.066

−0.053. In contrast  
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Figure 2: Two-dimensional marginalized confidence regions (at 68% and 95% CL) of  H0- 𝜴𝜿𝟎  

for wCDM+𝜴𝜿𝟎 and wCDM+𝜴𝜿𝟎 +𝜴𝝈𝟎  models from BAO+CC+BBN+PP and 

BAO+CC+BBN+PPSH0ES data combinations. 
 
to the ΛCDM model, the wCDM model's limits on 𝛺𝜅0  show greater variances, ranging from -0.188 ± 0.066 

to 0.032 ± 0.086. This implies that under wCDM scenarios, curvature estimations are more sensitive. There 
are negligible departures from isotropy in both models, as evidenced by the upper bounds on 𝛺𝜎0  staying at 

the same order of magnitude as in ΛCDM. With the BAO+CC+BBN+PPSH0ES combination yielding higher 
values (~72 km s⁻¹ Mpc⁻¹) than the BAO+CC+BBN+PP combination (~67 km s⁻¹ Mpc⁻¹), the H0 values in the 
wCDM models stay consistent with those in ΛCDM. The impact of a fluctuating dark energy equation of state 
on matter content estimate is reflected in the fact that 𝛺𝑚0  in the wCDM models is marginally lower than in 

ΛCDM, especially in situations with 𝛺𝜅0 and 𝛺𝜎0 .𝑟𝑑 and 𝑧𝑑 in wCDM exhibit values in agreement with ΛCDM, 

suggesting that changes in the dark energy equation of state do not substantially change these parameters. 
However, wCDM models have somewhat lower 𝜒2

𝑚𝑖𝑛 values than ΛCDM models, indicating a little better 

match to the observational evidence. 
In general, the wCDM model adds flexibility to the dark energy equation of state, which causes minor 
differences in estimations of cosmological parameters when compared to ΛCDM. The primary changes are seen 
in  𝛺𝜅0  and 𝛺𝑚0, where wCDM permits significantly lower matter density values and greater curvature 

variations. Notwithstanding these variations, the models are largely consistent, supporting the strength of the 
cosmological constraints in place while providing opportunity for future improvements in dark energy 
modeling. 
 

 
Figure 3: Two-dimensional marginalized confidence regions (at 68% and 95% CL) of 𝜴𝒎𝟎 - 𝜴𝜿𝟎  

for wCDM+𝜴𝜿𝟎 and wCDM+𝜴𝜿𝟎 +𝜴𝝈𝟎  models from BAO+CC+BBN+PP and 

BAO+CC+BBN+PPSH0ES data combinations. 
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V.CONCLUSION 
 
Comparing the extensions of ΛCDM (ΛCDM+𝛺𝜅0 and ΛCDM+𝛺𝜅0 +𝛺𝜎0 ) and wCDM (wCDM+𝛺𝜅0 and 

wCDM+𝛺𝜅0 +𝛺𝜎0 ) models reveal that important cosmological parameters like 𝛺𝑚0 ,  𝐻0 are impacted by the 

inclusion of 𝛺𝜅0  and 𝛺𝜎0. Although wCDM offers greater flexibility in the dark energy equation of state, ΛCDM 

is still a powerful model. The Hubble tension is shown in the consistent variation in 𝐻0 values across datasets. 
The universe's isotropy is supported by the extremely narrow upper bounds on 𝛺𝜎0. Both theories are consistent 
with important cosmological parameters, however 𝜒2

𝑚𝑖𝑛 values indicate that wCDM fits somewhat better. All 

things considered, wCDM permits greater variance in late-time cosmic acceleration, but ΛCDM is still a strong 
framework for explaining the history of the universe. 
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