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ARTICLE INFO ABSTRACT 
 Macular degeneration is a condition that impairs central vision. It damages the macula 

which is the part of the retina that is responsible for sharp, straight-ahead vision. Age-
related Macular Degeneration (AMD) is a specific age-related form of macular 
degeneration disease. AMD is a leading cause of vision impairment worldwide, 
necessitating early and accurate diagnosis for effective treatment. This research 
proposes an advanced method namely, ‘Macular Degeneration Diagnosis using 
OLQCT Preprocessing, Fuzzy Segmentation, and BPN classifier (MDD_OFB)’, for 
AMD diagnosis by combining ‘OLQCT preprocessing’, ‘fuzzy segmentation’, and ‘Back 
Propagation Neural network (BPN) classifier’. The new contribution of this work is a 
new preprocessing module, namely ‘Macular region preprocessing using OD 
elimination, Log enhancement, Quantization, Contrast stretching and Thresholding 
(OLQCT)’ which enhances the image quality of the macula region. Fuzzy segmentation 
is used to segment both the macula region and the wet macular region. The BPN 
classifier further classifies the extracted-features to diagnose the AMD accurately. 
Another contribution to this research is the new framework that is designed to 
integrate the four modules such as OLQCT preprocessing, dual-stage FCM 
segmentation, feature extraction, and BPN classifier. The proposed MDD_OFB 
method utilizes the KFI_DB, STARE_DB, and RFMI-DB datasets, ensuring robustness 
across diverse cases. Experimental results demonstrate an enhanced diagnostic 
performance, with significant improvements in Precision, Average Accuracy, Dice 
Coefficient, etc., when compared to existing methods. This proposed method enhances 
the accuracy by 2.056% than the second-best MD_MLC method. This integrated 
approach offers an advanced tool for early AMD detection, providing significant 
advantages in clinical practices. The proposed system ensures higher accuracy, lesser 
time consumption, reliability, and efficiency for AMD diagnosis. 
 
Keywords: Macular Degeneration, OLQCT Preprocessing, Fuzzy Segmentation, Back 
Propagation Neural Network, Fundus Imaging, Image Processing, Diagnosis System. 

 
1. Introduction 

 
The eye-fundus image is the most often used modality for examining the human eye. It is crucial for the 
identification and management of numerous eye illnesses. It provides a clear study of the structure of the 
macula, perhaps revealing the presence of macula-related eye disease [1]. 
The macula is a small but incredibly important component of the anatomy of the eye. It is located in the middle 
of the retina in the back of the eye. The macula is a tiny structure in the human eye, measuring only 5 
millimeters in diameter, but it is very important. It is in charge of center vision, which enables us to clearly 
perceive little details when identifying traffic signs, human faces, and words on a page. In addition, the macula 
plays an aspect in color vision, sense of clarity, and sharpness. For routine tasks requiring detailed vision, the 
macula's health is important. 
Age-related Macular Degeneration is one of the disorders in the macula that can damage the macula and cause 
considerable loss of vision. AMD is a progressive ocular disease that mainly affects the elderly. AMD is the 
primary cause of vision loss in adults 50 years of age and beyond. It comes in two primary forms: wet AMD 
(neovascular) and dry AMD (atrophic). Wet AMD is common but more severe, and frequently results in rapid 
vision loss, whereas dry AMD proceeds more slowly and is more prevalent. AMD can seriously impede daily 
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activities such as reading, driving, and facial recognition.  Regular eye exams are essential for anyone at risk of 
AMD because, while there is currently no treatment. Early detection and management techniques can help to 
reduce the disease's progression. The symptoms of AMD can differ according to the kind and phase of the 
illness. Typical symptoms consist of (i) Blurred central vision, (ii) Dark or Empty areas in vision, (iii) Distorted 
vision, (iv) Colors appearing less bright, (v) Sudden loss of central vision, etc., [2], [3], [4]. 
In digital image processing and computer vision, image segmentation is a method that divides a digital image 
into distinct parts or segments for evaluation. Macula segmentation is a critical issue in medical image 
processing in the field of ophthalmology. Its main objective is to precisely locate and extract the macula region 
from fundus images, which is important for tracking and diagnosing conditions that affect the eyes, like 
Diabetic Macular Edema (DME) and AMD [5], [6]. The computerized AMD diagnosis is a task that detects age-
related macular degeneration disease through digital approaches using fundus images. It is a difficult process 
because of the complexity of retinal images, which include the macula region's low contrast, size and shape 
fluctuations, a number of overlapping structures, and distortions caused by diseases. These characteristics offer 
major challenges to diagnosing AMD, which requires the use of sophisticated image processing and machine 
learning techniques to increase the accuracy of clinical application [7], [8]. The existing systems in AMD 
diagnosis suffer from low accuracy, high runtime, and high false acceptance. Hence, this research focuses on 
an automatic AMD diagnosis method ‘Macular Degeneration Diagnosis using OLQCT Preprocessing, Fuzzy 
Segmentation, and BPN Classifier (MDD_OFB)’, to solve the drawbacks of existing methods. The main 
contributions of the proposed system are as follows: 
 
● New preprocessing module, namely ‘Macular region preprocessing using OD elimination, Log enhancement, 
Quantization, Contrast stretching and Thresholding (OLQCT)’ to enhance the macula region to adapt to the 
upcoming macula region-oriented segmentation process. 
● Design of novel framework that integrates the components such as (i) OLQCT preprocessing, (ii) Dual stage 
fuzzy c means segmentation integrated with both macula region segmentation and Wet Macular segmentation, 
(iii) Feature extraction, and (iv) BPN classifier. 
The following research article explores the related works regarding the proposed work in Section 2, proposed 
methodology in Section 3, experimental results in Section 4, discussion in Section 5, and conclusion in Section 
6. 
 

2. Related Works 
 
Tobin et al. [9] described an automatic identification of the optic nerve and the macula's location using digital 
red-free fundus photography. This method works based on precisely segmenting the retina's vasculature, which 
is followed by the identification of spatial features that characterize the density, average thickness, and average 
orientation of the vasculature concerning the optic nerve's location. After determining the location of the optic 
nerve, the macula is localized by employing a geometric model of the vasculature to identify the retina's 
horizontal raphe. The flaw of this method is that it fails to correctly identify the macula position. Niemeijer et 
al. [10] exposed the OD, macula, and vascular arch which are the three main anatomical components that may 
be automatically identified in color fundus images. A single-point distribution model that includes points on 
each structure is fitted to the image in order to identify these structures. Both left and right optic disc and 
macula-focused images can be processed using this method. This system determines the accurate location of 
the model points using a cost function that is based on a combination of local and global data. A limitation of a 
global approach is that it can lead to failures in other areas if one area fails. 
 
Giancardo et al. [11] provided a method for analyzing the macula's edema using uncalibrated multiple-view 
fundus images. It also uses automatic algorithms to quantify features from the reconstructed image. These 
algorithms are helpful in the automated point-of-care identification of early macular edema, such as before the 
development of exudation. The method is broken down into three sections: first, a preprocessing method is 
used to simultaneously improve the macula's dark microstructures; second, non-morphological sparse features 
are used to register all available views; and third, a statistical merged to create a naive height map of the macula. 
The flaw of this method is it's not able to accurately determine depth. Rapantzikoset al. [12] explored the issue 
of automatic AMD evaluation in this research using methods based on histograms. It evaluates a histogram-
based enhancement method that segments areas that differ slightly from their background regions using a 
histogram-based segmentation methodology and employs histogram equalization as its main operator. The 
inability of this method is that it is tested with only a few images. 
 
Giancardo et al. [13] provided a collection of features based on color, wavelet decomposition, and 
automatic lesion segmentation for DME diagnosis. By using these features, a classifier is trained to 
automatically detect DME when exudation is present. This method is based on an algorithm that can identify 
exudates with a given confidence level without the need for machine learning techniques. The disfavor of this 
method is high time complexity. Akram et al. [14] offered an automated technique for detecting and classifying 
macular edema using an intelligence system. The method comprises a classifier based on the Gaussian mixtures 
model and a detailed feature set, for precise macula detection. Additionally, for better exudate detection 



746                         9800) 10(J. Jency et.al / Kuey, 30              

 
a hybrid classifier is used. The failure of this method is the undesired result for certain images. Mookiah et al. 
[15] exposed an automated fundus image-based screening technique for dry AMD. This study included various 
kinds of entropies, Gabor wavelet features taken from greyscale fundus images, Fractional Dimension (FD), 
and Higher Order Spectra (HOS) bispectra features. Using HOS and Gabor wavelet, non-linear characteristics 
can be recovered to identify sudden changes in both normal and dry AMD images. The negative side of this 
method is the difficulty in real-time implementation. Alais et al. [16] revealed a segmentation technique that 
evaluates the quality of retinal images with respect to the macular region's visibility. The macular region is 
segmented using a fully convolutional network. This algorithm can identify the fovea within an average of 0.1 
mm of human performance. This method's flaw is the low image quality. 
 
Li et al. [17] demonstrated the AMD-Net, a U-Net architecture that can partition the subretinal fluid and 
hemorrhage lesions of the wet AMD from the ocular fundus images. Three parts are included in the AMD-Net: 
the Decoder Attention Block (DAB), SKip connection Block (SKB), and Encoder Feature Fusion Unit (EFFU). 
The multi-scale characteristics are extracted and fused by the AMD-Net using the EFFU. Additionally, the 
attention module allows the EFFU to give discriminative features a larger weight. An SKB is designed by AMD-
Net to lessen the semantic gap between encoder and decoder characteristics. The DAB module is based on the 
UNet 3+ decoder. The failure of this method is high computational cost. Wan et al. [18] exposed a combined 
transformer and a convolutional neural network (CSPDarknet53) to generate a hybrid model called HCSP-Net. 
This hybrid model was used to tri-classify color fundus photography into three categories based on clinical 
classification manifestations: Normal Macula (NM), Dry Macular Degeneration (DMD), and Wet Macular 
Degeneration (WMD). The failure of this work is its data pre-processing results were not up to the mark and it 
resulted in inaccurate detection. 
 
Floriano et al. [19] exposed the mathematical morphology, DIP, and a Supporting Vector Machine (SVM) 
scheme for the AMD diagnosis using the fundus images. Pattern recognition algorithms are used to 
automatically detect the AMD region. It is accomplished by automatically creating a feature vector from the 
binarized fundus image's attributes. This feature vector is then supplied to an SVM classifier, which 
automatically identifies the patient's AMD by detecting the presence of drusen in the retina. The imperfection 
of this work is the inefficiency of a large quantity of macular degenerated regions. Xu et al. [20] presented the 
DeepDrAMD method, which is a transformer-based deep learning model for hierarchical vision that uses Color 
Fundus Photos (CFPs) to identify AMD. It differentiates various subtypes by integrating data augmentation 
techniques and Swin-Transformer. The implementation of DeepDrAMD in clinical practice can contribute to 
early intervention, personalized patient care, and improved outcomes in AMD management. The unworthy of 
this method is that it needs the careful alteration of hard-thresholds regarding real-world clinical settings. 
El‑Khalek et al. [21] offered a thorough Computer-Aided Diagnostic (CAD) framework for classifying fundus 
images into four groups: normal, wet AMD, intermediate AMD, and Geographic Atrophy (GA). The minus side 
of this work is that it has not support for long-term follow-up of AMD. 
 

3. Proposed Methodology 
 
This research proposes a novel method for essential AMD diagnosis entitled ‘Macular Degeneration Diagnosis 
using OLQCT preprocessing, Fuzzy segmentation, and BPN classifier (MDD_OFB)’. It is constructed based on 
3 core subjects viz. (i) Preprocessing using OLQCT method, (ii) Fuzzy-based segmentation, and (iii) Back 
Propagation Neural (BPN) network classifier. 
The three main modules of the proposed MDD_OFB method are (i) Query fundus image feature extraction, (ii) 
Training process using AMD and non-AMD samples, and (iii) BPN classifier-based AMD diagnosis. The overall 
block diagram of the proposed MDD_OFB method is illustrated in Figure 1. 
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Fig.1: Block diagram for macular degeneration diagnosis in the proposed MDD_OFB method. 

 
The RGB color fundus image of 24-bit format with 512x512 dimension is given as query or input to the proposed 
MDD_OFB method to diagnose the age-related macular degeneration disease. The novel OLQCT preprocessing 
method is employed to enhance the fundus image which removes the background and OD region. In this 
research, the dual-stage Fuzzy C Means (FCM) method is used to segment both the macula region and macular 
degeneration region. The Query features regarding to macula region are extracted from the macula region 
segmentation output of stage-I FCM.  The Query features regarding to macular degeneration region are 
extracted from the stage-II FCM segmentation output. Both the feature sets undergo the testing process of the 
BPN classifier. Finally, a rule-based decision system detects the macular degeneration disease. 
 
3.1 Query fundus image feature extraction 
The Query fundus image is fed as input to the proposed MDD_OFB method. In this section, the process of 
query feature extraction is described in detail. The main modules of this process are: 
● OLQCT preprocessing 
● Dual stage fuzzy c means segmentation integrated with both macula region segmentation and Wet Macular 

segmentation 
● Feature extraction. 
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3.1.1 OLQCT preprocessing 

 
 

In this process, first, the novel OLQCT method is employed to preprocess the query fundus image. It removes 
the background and OD region in the fundus image. The general block diagram of the proposed OLQCT 
preprocessing method is illustrated in Figure 2. Also, Figure 3 depicts the various steps of the OLQCT 
preprocessing method. 
 

Fig.2: Block diagram for the proposed OLQCT preprocessing method. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Input fundus image 

Background & OD elimination 

Log based enhancement 

Quantization based enhancement 

Contrast Stretching 

Thresholding 

Preprocessed fundus image 

Grayscale conversion 

OTSU’s binarization and Morphological operations 

FCM segmentation using background removed red channel 
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(i) (j) (k)  
Fig.3: Background removal process in query fundus image, (a) query image, (b) red image, (c) 

green image, (d) blue image, (e) grayscale image, (f) Otsus and morphological based 
background removed binary image, (g) foreground only red image, (h) FCM based OD 

segmentation, (i) OD subtracted fundus image, (j) log, quantization, contrast stretching based 
foreground preprocessing, (k) thresholding-based macula region preprocessing. 

 
The query image is read-out and stored in  𝐼𝐼𝑃 image, which is shown in Figure 3(a). The red, green, and blue 
components of the RGB color query image 𝐼𝐼𝑃, are extracted and stored in images such as 𝐼𝑅, 𝐼𝐺, 

and 𝐼𝐵 respectively. Figure 3(b) depicts the red channel and Figure 3(c) shows the green channel. Figure 3(d) 
shows the blue channel image. Next, the grayscale conversion process is forwarded to get the single-channel 
grayscale image 𝐼𝐺𝑆 instead of the multichannel RGB image 𝐼𝐼𝑃, based on Equation (1). The output of the 
grayscale image is shown in Figure 3(e). 
The binarization process proceeds to segment the background region using OTSUS- binarization method. 
OTSUS-binarization is referred to in Otsus (1979). It computes a global threshold from the grayscale image 𝐼𝐺𝑆 . 
It chooses a threshold T that minimizes the intraclass variance of the thresholded black and white pixels. The 
selected threshold is used to binarize the fundus image using Equation (1). 

𝐼𝐵𝐼𝑁
𝑖,𝑗

= {1, 𝑖𝑓 𝐼𝐺𝑆
𝑖,𝑗

> 𝑇  0, 𝑒𝑙𝑠𝑒                   `  (1) 

𝑖 ∈ [0, 𝐻 − 1], 𝑗 ∈ [0, 𝑊 − 1] 

Herein, the term 𝐼𝐵𝐼𝑁 refers to the binarized image, 𝑇 refers to the Otsu threshold, 𝐻 refers to the height of the 
image, and 𝑊refers to the width of the image. 
The binarized image contains many small holes, and they are removed using morphological processing. A 
structuring element SE of square shape with 3 × 3 dimension is generated. Normally, the binary image 
𝐼𝐵𝐼𝑁  contains a ring structure in the outer region of the foreground. It interrupts the upcoming processes. 
Hence, it should be removed. The erosion operation of the morphological approach is employed twice using 
the structural element SE. This background-removed binary image is noted as 𝐼𝐵𝐼𝑁  and it is shown in Figure 
3(f). Herein, the background is represented by zeros, while the foreground is represented by ones. 
Optic Disc (OD) is one of the main components in the fundus image. It refers to the optic nerve region. This 
OD region appears as an obstacle when segmenting the macula region. Therefore, the macula region 
segmentation process needs the elimination or absence of the OD region, which promotes or enhances the 
quality of upcoming macula region and macular region segmentation. The OD segmentation is much supported 
by the red color channel, hence, the background removed the red color channel 𝐼𝐵𝑅 is obtained using Equation 
(2). 

𝐼𝐵𝑅
𝑖,𝑗

= {𝐼𝑅
𝑖,𝑗

, 𝑖𝑓 𝐼𝐵𝐼𝑁
𝑖,𝑗

= 1  255, 𝑒𝑙𝑠𝑒                      (2) 

The 𝐼𝐵𝑅
𝑖,𝑗

 pixel location receives the real values of [𝑖, 𝑗]𝑡ℎ location of 𝐼𝑅 image when regarding to foreground 
region, and for the background region it receives 255 which corresponds to white color. The color of the macula 
or macular region is related to dark color, and it coincides with the dark color of the background region. This 
contradiction negatively impacts the upcoming macula or macular region segmentation. Suppose, the 
background region is filled with other-than-dark colors, then it will increase the quality of both macula and 
macular region segmentation. Hence, the bright intensity value 255 is chosen to fill the background region in 
the red channel. Figure 3(g) shows the output of the background removed red channel image. 
Fuzzy C Means is the fuzzy-based segmentation method that segments the image into k meaningful groups in 
an unsupervised manner. The background removed the red image 𝐼𝐵𝑅  is given as input to the FCM process. It 
segments the image into two groups. The first group denotes the background and the OD region, whereas the 
second group denotes the foreground region except the OD region. Meaning that, the ‘background and the OD 
region’ is represented by a single unique number, and the foreground region is marked by another single unique 
number. The [0,0]th pixel in the segmented image indicates the numeric value of the OD region and the 
background region. The FCM segmentation output is noted as 𝐼𝑆𝐸𝐺 , which is shown in Figure 3(h). The 
background removed the green image 𝐼𝐵𝐺  is obtained similar to 𝐼𝐵𝑅 . The OD eliminated the green image  𝐼𝑂𝐷𝐺 is 
obtained using the aid of 𝐼𝑆𝐸𝐺  image and the 𝐼𝐵𝐼𝑁 image, which is guided by Equation (3). 

𝐼𝑂𝐷𝐺
𝑖,𝑗

= {255, 𝑖𝑓 𝐼𝐵𝐼𝑁
𝑖,𝑗

= 1 & 𝐼𝑆𝐸𝐺
𝑖,𝑗

=  𝐼𝑆𝐸𝐺
0,0   𝐼𝐵𝐺

𝑖,𝑗
, 𝑒𝑙𝑠𝑒                                         (3) 
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𝑖 ∈ [0, 𝐻 − 1], 𝑗 ∈ [0, 𝑊 − 1] 

In Equation (3), the term 𝐼𝑆𝐸𝐺
0,0  refers to the value of [0,0]𝑡ℎ pixel of  𝐼𝑆𝐸𝐺 image. The resultant background and 

OD eliminated the green image 𝐼𝑂𝐷𝐺 is shown in Figure 3(i), where both background and OD regions are marked 
by 255. The  𝐼𝑂𝐷𝐺 image is further enhanced by a log-based approach using Equation (4). 

𝐼𝑂𝐷𝐺 = 𝑙𝑜𝑔10(𝐼𝑂𝐷𝐺)         (4) 
In Equation (4), the image is enhanced by a logarithmic way that suppresses the background while improving 
the macula region or the macular region.  A uniform quantization is approached to limit the values in a smaller 
level, using Equation (5). 

𝐼𝑂𝐷𝐺 =
𝐼𝑂𝐷𝐺

𝑄𝐶
          (5) 

In Equation (5), the term 𝑄𝐶 refers to the quantization constant, which is fixed as 12. This constant yields a 
smooth region that supports better image enhancement. The contrast stretching process is employed to 
improve the contrast level, using Equation (6). 

𝐼𝑂𝐷𝐺 = 𝐼𝑂𝐷𝐺 − 𝑚𝑖𝑛(𝐼𝑂𝐷𝐺)        (6) 
Equation (6) ensures the starting intensity of the enhanced image as 0. It stretches the intensity range to a 
better level. Further, the range of intensity is extended to 0 to 255 using Equation (7). 

𝐼𝑂𝐷𝐺 = 𝑓𝑖𝑥 (
𝐼𝑂𝐷𝐺

𝑚𝑎𝑥(𝐼𝑂𝐷𝐺)
× 255)        (7) 

Herein, the term 
𝐼𝑂𝐷𝐺

𝑚𝑎𝑥(𝐼𝑂𝐷𝐺)
 yields the data range from 0 to 1.0. The constant 255 stretches the contrast to the 

complete-intensity range that is 0 to 255. Figure 3(j) illustrates the output of the enhanced version. The 𝐼𝑂𝐷𝐺  
image is thresholded based on the constant 𝑡ℎ using Equation (8). 

𝐼𝑂𝐿𝑄𝐶𝑇
𝑖,𝑗

= {255, 𝑖𝑓 𝐼𝑂𝐷𝐺
𝑖,𝑗

> 𝑡ℎ 𝐼𝑂𝐷𝐺
𝑖,𝑗

, 𝑒𝑙𝑠𝑒                              (8) 

In Equation (8), the term 𝐼𝑂𝐿𝑄𝐶𝑇 expresses the enhanced image by the proposed OLQCT preprocessing method. 

The threshold 𝑡ℎ is fixed as 64 which is decided based on multi-trials in this experiment. The output of 𝐼𝑂𝐿𝑄𝐶𝑇 

is shown in Figure 3(k), which contains the macula region as well as some other vessel components, but not the 
background, inner tissue, and OD. This enhanced result supports the upcoming segmentation tasks. 
 
3.1.2 Dual stage fuzzy c means segmentation integrated with both macula region segmentation 
and Wet Macular segmentation 
In this section, the macula region and the wet macular region are segmented individually based on the FCM 
process. The FCM clustering algorithm works based on fuzzy technology and it clusters the given image into C 
meaningful clusters. This section deals with the concept of dual FCMs that belongs to two stages of 
segmentation. The first stage of segmentation is related to the macula region segmentation and the second 
stage is related to the wet macular region segmentation. 
In the first stage, FCM accepts the preprocessed 𝐼𝑂𝐿𝑄𝐶𝑇 image as input and delivers the output of macula region 

segmentation. The FCM is configured as below to get an effective segmentation: 
● Total clusters = 4 
● Exponent value = 2 
● Maximum iterations = 100 
● Minimum improvement =1. 
There is a possibility of the regions such as background, low contrast tissue area, high contrast tissue area, and 
macula area. Hence, Total clusters are fixed as 4. The initial process starts with the objective function, 
membership matrix, center computation, etc. Afterwards, the distance computation and membership updation 
processes are performed. Finally, the objective function decides the quitting of the FCM loop, and the 
defuzzification process constructs the segmented image. Figure 4(a) shows the segmented results of FCM. The 
segmented image contains four binary images, each containing an individual cluster among the four clusters. 
Those binary images are marked as 𝐼𝐵𝐼𝑁1,  𝐼𝐵𝐼𝑁2,  𝐼𝐵𝐼𝑁3, and  𝐼𝐵𝐼𝑁4. The mean computation process is employed on 

the  𝐼𝐵𝐼𝑁1 binary image based on Equation (9). 

𝜇 =
∑𝐻−1

𝑖=0 ∑𝑊−1
𝑗=0 𝑓(𝐼𝐵𝐼𝑁1

𝑖,𝑗
)

∑𝐻−1
𝑖=0 ∑𝑊−1

𝑗=0 𝐼𝐵𝐼𝑁1
𝑖,𝑗           (9) 

𝑓(𝐼𝐵𝐼𝑁1
𝑖,𝑗

) = {𝐼𝑂𝐿𝑄𝐶𝑇,
𝑖,𝑗

 𝑖𝑓 𝐼𝐵𝐼𝑁1
𝑖,𝑗

= 1  0,       𝑒𝑙𝑠𝑒                         

 (10) 
where 
𝜇

2
 – Mean of intensities corresponding to  𝐼𝐵𝐼𝑁1 image 

𝑓(𝑥) – Function to retrieve intensity data 
In Equation (10), the mean value is computed on the locations of 1s in the  𝐼𝐵𝐼𝑁1 image. Similar to this, the 
𝜇

2
, 𝜇3 and 𝜇4 are computed based on the  𝐼𝐵𝐼𝑁2,  𝐼𝐵𝐼𝑁3, and  𝐼𝐵𝐼𝑁4 images. Also, the minimum mean value 𝜇 is 

computed. The minimum 𝜇 provider’s index is found, and based on that the corresponding binary image is 
chosen as the binary version of the segmented image. From this image, the maximum-area object is found and 
it is noted as the binary version of the macula region segmented image  𝐼𝐵𝐼𝑁_𝑀𝑅. 



751              J. Jency et.al / Kuey, 30(10) 9800                         

 
 

 
(a)                                       (b) 

Fig. 4: First stage segmentation results, (a) FCM based clustering, (b) macula region 
segmented image. 

 
The 𝐼𝐵𝐼𝑁_𝑀𝑅 image’s locations corresponding to 1s are undergone to generate the intensity version of macula 
region segmentation using the Green image  𝐼𝐺. The locations of 0’s of   𝐼𝐵𝐼𝑁_𝑀𝑅 image loaded with the values of 
25. It can be shown in Equation (11). 

𝐼𝑀𝑅𝑆
𝑖,𝑗

=  {𝐼𝐺
𝑖,𝑗

,   𝑖𝑓 𝐼𝐵𝐼𝑁_𝑀𝑅
𝑖,𝑗

= 1  255,   𝑒𝑙𝑠𝑒                       (11) 

𝑖 ∈ [0, 𝐻 − 1], 𝑗 ∈ [0, 𝑊 − 1] 

In Equation (11), the term 𝐼𝑀𝑅𝑆 refers to the macula region segmented image. The macula region segmented 
image is explored in Figure 4(b). 
The second stage performs the FCM segmentation for wet macular region segmentation. It accepts the 
grayscale image  𝐼𝐺𝑆 as input and delivers the output of wet macular region segmented image. The FCM 
segmentation is applied similar to the previous model segmentation for the 𝐼𝐺𝑆 image with the same 
configuration. The output of FCM segmentation is depicted in Figure 5(a). It yields four binary images. The 
corresponding four mean values are computed similar to Equation (9). The minimum mean 𝜇 is computed. The 
corresponding cluster regarding 𝜇 is found, and that binary cluster image is employed for two morphological 
operations such as erosion followed by dilation to disconnect the unwanted small connections with neighbour 
objects. The maximum-area object is used to construct the binary version of wet macular region segmentation 
which is noted as 𝐼𝐵𝐼𝑁_𝑊𝑀𝑅. 

The intensity version of the wet macular region is obtained using 𝐼𝐵𝐼𝑁_𝑊𝑀𝑅  image and grayscale image 𝐼𝐺𝑆  using 
Equation (12). 

𝐼𝑊𝑀𝑅𝑆
𝑖,𝑗

= {𝐼𝐺𝑆
𝑖,𝑗

,   𝑖𝑓 𝐼𝐵𝐼𝑁_𝑊𝑀𝑅
𝑖,𝑗

= 1 255,   𝑒𝑙𝑠𝑒                           (12) 

𝑖 ∈ [0, 𝐻 − 1], 𝑗 ∈ [0, 𝑊 − 1] 

 

 
Fig. 5: Second stage segmentation results, (a) FCM segmentation, (b) wet macular region 

segmentation output. 
 

In Equation (12), the term  𝐼𝑊𝑀𝑅𝑆 refers to the wet macular region segmented image. Herein, the wet macular 
region is indicated by the intensities derived from the grayscale image while the other pixels are fixed 255. The 
output of  𝐼𝑊𝑀𝑅𝑆 image is shown in Figure 5(b). The FCM process regarding to macular region is exactly tuned 
to segment the wet macular region only and it is not suitable for the macula region. Herein, the input image is 
a non-AMD image, i.e. it contains only the macula region and not the wet macular degeneration region. This 
current FCM process falsely detects the macular degeneration area, because in this image the AMD region is 
absent. If suppose, there is the possibility of AMD region, then the proposed approach exactly detects the AMD 
region. But, in this current experiment, it is not possible. Shortly speaking, the macula region supporting FCM 
(i.e. stage-1 FCM) detects macula region exactly and not the macular region. Also, the macular region 
supporting FCM (i.e. stage-2 FCM) detects the macular region exactly and not the macula region. Hence, in 
Figure 5(b) it is an irrelevant one regarding to AMD region. Thus, the Dual FCM system segments both the 
macula region and the wet macular region. 
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3.1.3 Feature extraction 
This section extracts the feature data from the cropped regions of both macula segmentation and macular 
segmentation. It extracts thirteen effective features for the query fundus image. They are: 
● Area property 
● Perimeter property 
● Circularity property 
● Mean property 
● Standard Deviation (STD) property 
● Eight-bin histogram. 
 
Area property refers the measure of area occupied by the segmented object, which is measured using the 
bounding box of binary cropped object. Perimeter is the property that is the measure of the contour of object 
which is measured using the binary cropped object. Circularity property is the measure of circular-form of the 
binary cropped object. The mean-property refers the average intensity of the cropped segmented object. The 
STD property reflects the variation level of the cropped object. Eight-bin histogram reflects the frequency of 
intensity values that are compressed in eight bins. 
The binary macula segmented image 𝐼𝐵𝐼𝑁_𝑀𝑅 is processed to get the bounding box of the macula object. Also, 

the intensity data corresponding to bounding box is extracted from the  𝐼𝐺𝑆  image. The binary bounding box 
object is noted as 𝐼𝐵𝐵𝑜𝑥 . The Gray bounding box object is noted as 𝐼𝐺𝑆_𝐵𝑜𝑥. The area, perimeter and circulatiy 

features are computed from the  𝐼𝐵𝐵𝑜𝑥   image and stored as query macula region features such as 𝐹𝑄_𝑀𝑅,
0  𝐹𝑄_𝑀𝑅,

1  

and 𝐹𝑄_𝑀𝑅,
2  respectively. The mean features, and STD features are computed from the  𝐼𝐺𝑆_𝐵𝑜𝑥  object, and stored 

in 𝐹𝑄_𝑀𝑅  
3 and 𝐹𝑄_𝑀𝑅  

4 respectively. The histogram of  𝐼𝐺𝑆_𝐵𝑜𝑥  is found along with 8 bins, and it is stored as in the 

range of features from 𝐹𝑄_𝑀𝑅  
5 and 𝐹𝑄_𝑀𝑅

12 . The total feature corresponding to macula region is 13. In the similar 

manner, the Query wet macular region features are found and stored in the range of features from 
𝐹𝑄_𝑊𝑀𝑅  

0 to 𝐹𝑄_𝑊𝑀𝑅 
12 . Thus, the macula region and wet macular region-based features are computed. 

 
3.2 Training process using non-AMD and AMD samples 
Training a neural network means training sample feature vectors using a learning process to get a trained 
network that can able to do a classification task. In this section, 𝑚 samples from non-AMD and 𝑛 samples from 
AMD are collected from a dataset, and they are used to train the neural network. The block diagram of the 
training process is explored in Figure 6. 
BPN is a type of Artificial Neural Network (ANN) that utilizes the back-propagation algorithm for training. It 
is widely used for supervised learning tasks, particularly in classification tasks. It consists of multiple layers, 
and they are: 
● Input layer 
● Hidden layer 
● Output layer. 
 
The input layer receives input features, and the hidden layer performs computations using activation functions. 
The output layer delivers the final predicted result. The BPN algorithm is a supervised learning technique used 
to minimize the error between actual and predicted outputs. It does the below steps: 
● Forward propagation 
● Error calculation 
● Backward propagation 
● Weight update. 
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Fig. 6: Block diagram for the training process in the proposed MDD_OFB method. 

 
In the first step, inputs are passed through the network, and the outputs are computed. In the second step, the 
difference between actual and predicted outputs is calculated using a loss function. In the third step, the error 
is propagated backward through the network using gradient descent to adjust the weights. In the final step, the 
weights are updated using the gradient of the loss function to reduce error. BPN network can model complex 
patterns and relationships. It works well for large datasets. BPN is a powerful tool to perform image 
recognition, financial forecasting, and medical image classification. 
The 𝑚 samples of non-AMD type undergone the feature extraction process similar to query processing, and 
they are noted as 𝐹𝐷_𝑀𝑅

𝑝,𝑞
, where 𝑝 ∈ [0, 𝑚 − 1], 𝑞 ∈ [0,12]. The 𝑛 samples of AMD type undergone the feature 

extraction process similar to query processing, and they are noted as 𝐹𝐷_𝑊𝑀𝑅
𝑝,𝑞

, where 𝑝 ∈ [0, 𝑛 − 1], 𝑞 ∈ [0,12]. 

The BPN network is configured with learning rate=0.0001, momentum constant=0.0009, maximum 
iterations=100, and goal=0.00000008. The targets or known-outputs are set to non-AMD features as ‘0’ which 
AMD features keep it as ‘1’. 
 

 
Fig. 7: Training of BPN network. 

 
The training process is invoked using the arguments like BPN network, training feature vectors that contain 
both the macular region and wet macular region, and target vector to get the predicts output. Figure 7 shows 
the training process of features. The trained-BPN network is noted as BPN-net. 
 
3.3 BPN classifier-based AMD diagnosis 
In this section, the query feature set corresponding to the macula region (i.e., 𝐹𝑄_𝑀𝑅) is tested using the trained-

BPN network based on MATLAB’s built-in command ‘sim()’ along with the parameters such as BPN-net and 

𝐹𝑄_𝑀𝑅. The predicted value is noted as 𝛽. Also, the query feature set 𝐹𝐷_𝑊𝑀𝑅 corresponding to the wet macular 

region is tested using the trained-BPN network. The predicted value is noted as 𝛾. 
A rule-based system is designed to detect/classify macular degeneration disease which incorporates both 
parameters 𝛽 and 𝛾. The decision system is given in Equation (13), Equation (14), and Equation (15). 

𝛿𝑀𝑅 = |0 − 𝛽|           (13) 

 Non-AMD sample fundus image  AMD sample fundus image 

OLQCT preprocessing OLQCT preprocessing 

FCM based segmentation for 

macula region 

FCM based segmentation focusing 

on macular degeneration region 

Feature generation based on area, 

mean, standard deviation and 8-bin 

histogram 

Feature generation based on area, 

mean, standard deviation and 8-bin 

histogram 

 Non-AMD feature set gathering  AMD feature set gathering 

BPN Network 

creation BPN Network training 

Trained BPN 
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𝛿𝑊𝑀𝑅 = |1 − 𝛾|         (14) 
𝜌 = {1, 𝑖𝑓𝛿𝑀𝑅 < 𝛿𝑊𝑀𝑅   0, 𝑒𝑙𝑠𝑒                            (15) 

 
In Equation (13), the term 𝛿𝑀𝑅 refers to the measure of closeness against the constant ‘0’. In Equation (14), the 
term 𝛿𝑊𝑀𝑅  refers to the measure of closeness against the constant ‘1’. Herein, the constant ‘0’ refers to the target 
value corresponding to non-AMD, and the constant ‘1’ refers to the target value corresponding to AMD disease. 
In Equation (13), the error in non-AMD based prediction is computed while in Equation (14), the error in AMD 
based prediction is computed. In Equation (15), the minimum value among 𝛿𝑀𝑅 and 𝛿𝑊𝑀𝑅  are found. If 𝛿𝑀𝑅 is 

the minimum value, then ‘1’ is returned, otherwise 0 is returned. The term 𝜌 means the final prediction result. 
 

 
Fig. 8: AMD diagnosis report. 

 

If 𝜌 is equal to 1 then the given image is reported as non-AMD, otherwise it is reported as AMD. Figure 8 shows 
the report of AMD diagnosis. Thus, the classification process successfully diagnoses the AMD disease. 
 
4. Experimental Results 
This research considers three methods regarding macular degeneration to make the analysis against the 
proposed MDD_OFB method. They are: 
● Macular Degeneration diagnosis using Machine Learning (MD_ML) [19] 
● Macular Degeneration diagnosis using Deep Learning with Hierarchical Vision Transformer (MD_DLHVT) 
[20] 
● Macular Degeneration diagnosis using Machine Learning based Classification (MD_MLC) [21]. 
The proposed AMD diagnosis method uses three image datasets, and they are: 
● Kaggle Fundus Image Database (KFI_DB) [22] 
● STructured Analysis of the REtina Database (STARE_DB) [23] 
● Retinal Fundus Multi-disease Image Database (RFMI_DB) [24]. 
The databases namely, KFI_DB, STARE_DB, and RFMI_DB contain the fundus images that belongs to normal 
and abnormal referred with wet macular degeneration. Five analytic measures are used to assess the 
effectiveness of the proposed MDD_OFB method, and they are: Precision, Accuracy, Dice Coefficient, Time 
taken, and Confusion matrix. 
Precision is a metric used to determine the classification performance of an algorithm. It can be defined in 
Equation (18). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐸𝑣𝑒𝑟𝑦𝑡ℎ𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (18) 

The range of data that is fixed in this analysis is from 0 to 1. The high precision means better classification and 
vice versa.  In this analysis, 300 test images per database, are randomly selected for evaluating the AMD 
diagnosis algorithms. 
 

Table 1: Average Precision analysis for AMD diagnosis 

Database 

Average Precision 
Methods 

MD_ML MD_DLHVT MD_MLC 
Proposed 
MDD_OFB 

KFI_DB 0.940 0.943 0.972 0.984 
STARE_DB 0.920 0.928 0.970 0.980 
RFMI_DB 0.944 0.952 0.972 0.988 

 
Accuracy is an analytic measure that is used to measure the performance of the classification algorithms. It is 
the proportion of all classifications that are correct, whether positive or negative. It can be computed using 
Equation (19). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
       (19) 

The higher accuracy refers to better classification. Herein, 300 test images in each database are chosen, and 
they are used to analyze the proposed MDD_OFB method against the existing methods 
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Fig. 9: Average Accuracy analysis chart for AMD diagnosis. 

 
Dice Coefficient analysis on AMD diagnosis determines the classification power of the proposed method and 
the other existing methods. It compares the pixel-wise agreement between a predicted classification and its 
corresponding ground truth. It is computed based on Equation (20). 

𝐷𝐶 =
2×|𝑋∩𝑌|

|𝑋|+|𝑌|
         (20) 

Herein, the term 𝐷𝐶 means the Dice Coefficient. It occupies the data range between 0 to 1. In Equation (20), 
the term X means predicted results and Y is the ground truth. The higher dice score shows the better 
performance of a specified classification algorithm. 
 

Table 2: Average Dice Coefficient analysis for AMD diagnosis 

Database 

Average Dice Coefficient 
Methods 

MD_ML MD_DLHVT MD_MLC 
Proposed 
MDD_OFB 

KFI_DB 0.9090 0.9216 0.9448 0.9652 

STARE_DB 0.9051 0.9170 0.9416 0.9645 

RFMI_DB 0.9171 0.9230 0.9471 0.9674 

In AMD diagnosis, the Time Taken metric measures the overall amount of time needed for a patient to obtain 
a verified diagnosis. The unit of this metric is known as ‘seconds’. 

 

 
Fig.10: Average Time taken analysis for AMD diagnosis. 

 
The Confusion Matrix is a crucial tool for evaluating the accuracy of diagnostic algorithms in detecting AMD. 
It compares the model's predictions to the actual results to give a thorough analysis. False Positives (FP), True 
Negatives (TN), False Negatives (FN), and True Positives (TP) are the four main parts of the matrix used in 
AMD diagnosis. True Positives are AMD cases that were accurately identified, whereas False Negatives are 
AMD cases that the model failed to detect. False Positives are non-AMD cases that are misdiagnosed as AMD, 
while True Negatives are non-AMD cases that are accurately categorized as negative. In this analysis, 500 test 
images are chosen randomly from each of the three datasets such as KFI_DB, STARE_DB, and RFMI_DB to 
evaluate the performance of the proposed method and existing methods. 
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Fig.11: Confusion matrices for the AMD diagnosis using four methods for RFMI_DB database; 
(a) MD_ML method, (b) MD_DLHVT method, (c) MD_MLC method, (d) proposed MDD_OFB 

method. 
 

5. Discussion 
 
Table 1 describes the analytic results based on precision metric. The ‘wet macular degeneration affected images’ 
and ‘non-affected images’ are given for precision-based classification analysis on four AMD diagnosis methods 
such as MD_ML, MD_DLHVT, MD_MLC, and the proposed MDD_OFB to evaluate this assessment. The three 
effective databases KFI_DB, STARE_DB, and RFMI_DB are used to make this analysis an essential one. The 
RFMI_DB database reaches the best performance (i.e., 0.988) because it attains the highest average-precision 
result. The overall-precision results corresponding to the four methods are 0.934, 0.941, 0.971, and 0.984, with 
respect to MD_ML, MD_DLHVT, MD_MLC, and the proposed MDD_OFB methods. The proposed method 
produces the highest overall-precision result, i.e., 0.984, therefore it produces better precision than the existing 
methods. The MD_MLC method is noted as the second-best method, because it produces the second-grade 
overall-precision value i.e., 0.971. This analysis proves that the proposed method is better than the existing 
methods. 
Figure 9 reveals the analysis that is based on the average accuracy of AMD diagnosis or classification. The 
affected and non-affected image samples of macular degeneration are used for this assessment. The average 
accuracy of the proposed method regarding the three databases such as KFI_DB, STARE_DB, and RFMI_DB 
are 97.436, 97.366, and 97.659. These values explore that the proposed method yields higher accuracy than the 
existing methods, irrespective of the databases. The RFMI-DB database supports essentially for the AMD 
diagnosis than the other two databases. The overall accuracies of the four methods such as MD_ML, 
MD_DLHVT, MD_MLC, and the proposed MDD_OFB are 92.006, 93.032, 95.431, and 97.487. This analysis 
proves that the proposed method improves the accuracy regarding to AMD diagnosis. 
Dice Coefficient analysis for the AMD diagnosis is shown in Table 2 for the three existing methods and the 
proposed MDD_OFB method. The dice coefficient of the MDD_OFB method has the highest value of 0.9674 
which corresponds to the RFMI_DB database. The MDD_OFB method is the best method for diagnosing AMD 
among the three methods. As per this study, the MD_MLC method is the second-best method for AMD 
diagnosis because it yields the range of dice coefficients from 0.9416 to 0.9471, which are less than the proposed 
MDD_OFB and greater than both the MD_ML and MD_DLHVT methods. Finally, the MD_ML method yields 
the lowest dice coefficient for AMD diagnosis. The proposed MDD_OFB method is the winner among the four 
methods based on the Dice coefficient metric. 
The Time-Taken analysis compares the proposed MDD_OFB method with three existing methods for AMD 
diagnosis, as illustrated in Figure 10. The MDD_OFB method demonstrates the shortest time by taking 15.57 
seconds on the RFMI_DB dataset, which makes it the fastest approach for AMD diagnosis. For the other two 
datasets such as KFI_DB and STARE_DB, the MDD_OFB method records the minimal times of 16.32 seconds 
and 16.90 seconds, respectively. Conversely, the existing MD_DLHVT method is the slowest, with a maximum 
time of 22.13 seconds for diagnosing AMD. 
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Figure 11 shows the four confusion matrices related to the four methods including MD_ML, MD_DLHVT, 
MD_MLC, and the proposed MDD_OFB database. Figure 11(a) shows the confusion matrix related to the 
MD_ML method. Figure 11(b) denotes the confusion matrix regarding the MD_DLHVT method. Figure 11(c) 
focuses on the confusion matrix of the MD_MLC method, and Figure 11(d) depicts the confusion matrix of the 
proposed MDD_OFB method. The proposed MDD_OFB method yields the highest TP of 246, meanwhile, it 
yields the least FP when compared to existing methods. Also, the proposed method delivers the highest TN of 
242, and the least FN of 8 while compared with the existing versions of AMD diagnosis. The MD_MLC method 
activates as the second-best method because according to the confusion matrix specified in Figure 11(c), it 
delivers secondary-level better results for the four parameters such as TP, FP, TN, and FN. The MD_ML 
method is the least performer according to its confusion matrix. This analysis proves that the proposed 
MDD_OFB method acts as the highly best approach for AMD diagnosis in fundus images. 
 

6. Conclusion 
 
The MDD_OFB method is proposed for diagnosing AMD in fundus images which integrates OLQCT 
preprocessing, FCM segmentation, and a BPN classifier algorithm. The innovative OLQCT preprocessing 
technique improves fundus images by eliminating the background and OD region. A dual-stage FCM approach 
is used to segment both the macula and macular degeneration regions. Features from the macula region are 
extracted from the Stage-I FCM output, while features from the macular degeneration region come from Stage-
II FCM. These feature sets are then tested with the BPN classifier. The method's performance in diagnosing 
AMD is assessed using databases like KFI_DB, STARE_DB, and RFMI_DB. Results show that the MDD_OFB 
method outperforms others, achieving the highest precision, accuracy, and dice coefficient, along with fast 
execution across all datasets. It improves accuracy by 2.056%, increases the dice coefficient by 2.244, and 
reduces processing time by 2.743 seconds compared to the second-best MD_MLC method. Overall, the 
proposed MDD_OFB method demonstrates superior diagnostic performance for AMD compared to existing 
methods. 
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